Keywords and phrases: Fréchet distribution, quartic transmuted family, parameter estimation, simulation.
Received: October 31, 2023; Accepted: December 2, 2023; Published: December 29, 2023
How to cite this article: Randhall Josnille M’Pemba Massaka, Deryl Nathan Bonazébi Yindoula and Benjamin Mampassi, Pseudo-spectral differentiation on a triangle and its application to a triangular mesh for a planar domain with irregular contour, International Journal of Numerical Methods and Applications 24(1) (2024), 1-16. http://dx.doi.org/10.17654/0975045224001
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] I. Babuška, B. A. Szabo and I. N. Katz, The p-version of the finite element method, SIAM J. Numer. Anal. 18 (1981), 515-545. [2] L. Bos, M. A. Taylor and B. A. Wingate, Tensor product Gauss-Lobatto points are Fekete points for the cube, Math. Comp. 70 (2001), 1543-1547. [3] J. P. Boyd, Chebyshev and Fourier Spectral Methods, Springer, 2001. [4] C. Canuto, M. Y. Husanini, A. Quarteroni and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer, Berlin, 1988. [5] M. Dubiner, Spectral methods on triangles and other domains, J. Sci. Comput. 6 (1991), 345-390. [6] J. S. Hesthaven, S. Gottlied and D. Gottlieb, Spectral Methods for Time-dependent Problems, Cambridge University Press, 2007. [7] G. E. Karniadakis and S. J. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, Oxford University Press, 2005. [8] L. Li and G. Wang, The application of Chebyshev collocation method for solving differential equations with non-regular boundary, Appl. Math. Comput. 262 (2015), 225-240. [9] A. T. Patera, A spectral method for fluid dynamics: laminar row in a channel expansion, J. Comput. Phys. 54 (1984), 468-488. [10] S. J. Sherwin and G. E. Karniadakis, A new triangular and tetrahedral basis for high-order (hp) finite element methods, Internat. J. Numer. Methods Engrg. 38 (1995), 3775-3802. [11] M. A. Taylor, B. A. Wingate and R. E. Vincent, An algorithm for computing Fekete points in the triangle, SIAM J. Numer. Anal. 38 (2000), 1707-1720. [12] L. N. Trefethen, Spectral Methods in Matlab, SIAM, Philadelphia, 2000. [13] L. L. Wang, M. D. Samson and X. Zhao, A well-conditioned collocation method using a pseudo-spectral integration matrix, SIAM J. Sci. Comput. 36(3) (2014), A907-A920. [14] D. Welfert Bruno, Generation of pseudo-spectral differentiation matrices, SIAM J. Numer. Anal. 34(4) (1997), 1640-1657. [15] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Vol. 1, McGraw-Hill, New York, 1989.
|