Keywords and phrases: autoregressive model, linear regression, local linear, two-stage estimation, varying coefficient.
Received: September 11, 2023; Accepted: December 13, 2023; Published: January 2, 2024
How to cite this article: Zhiqiang Cao and Hui Li, Partially linear varying-coefficient autoregressive model, Advances and Applications in Statistics 91(2) (2024), 141-173. http://dx.doi.org/10.17654/0972361724011
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] B. A. Brumback and J. A. Rice, Smoothing spline models for the analysis of nested and crossed samples of curves, J. Amer. Stat. Assoc. 93(443) (1998), 961-976. [2] Z. Cai, Trending time-varying coefficient time series models with serially correlated errors, J. Econometrics 136(1) (2007), 163-188. [3] Z. Cai, L. Chen and Y. Fang, Semiparametric estimation of partially varying-coefficient dynamic panel data models, Economet. Rev. 34(6-10) (2015), 694-718. [4] Z. Cai, J. Fan and Q. Yao, Functional-coefficients regression models for nonlinear time series, J. Amer. Stat. Assoc. 95(451) (2000), 941-956. [5] Z. Cai, Y. Fang and D. Tian, Assessing tail risk using expectile regressions with partially varying coefficients, Journal of Management Science and Engineering 3(4) (2018), 183-213. [6] X. B. Chen, J. Gao, D. Li and P. Silvapulle, Nonparametric estimation and forecasting for time-varying coefficient realized volatility models, J. Bus. Econ. Stat. 36(1) (2018), 88-100. [7] R. Chen and L. M. Liu, Functional coefficient autoregressive models: estimation and tests of hypotheses, J. Time Ser. Anal. 22(2) (2001), 151-173. [8] R. Chen and R. S. Tsay, Functional-coefficient autoregressive models, J. Amer. Stat. Assoc. 88(421) (1993), 298-308. [9] T. Cheng, J. Gao and X. Zhang, Bayesian bandwidth estimation in nonparametric time-varying coefficient models, J. Bus. Econ. Stat. 37(1) (2019), 1-12. [10] J. S. Cho, M. J. Greenwood-Nimmo and Y. Shin, Testing for the Threshold Autoregressive Distributed Lag Model, University of York, Mimeo, 2020a. [11] J. S. Cho, M. J. Greenwood-Nimmo and Y. Shin, The Threshold Autoregressive Distributed Lag Model, University of York, Mimeo, 2020b. [12] J. S. Cho, M. Greenwood-Nimmo and Y. Shin, Recent developments of the autoregressive distributed lag modelling framework, J. Econ. Surv. 37(1) (2023), 7-32. [13] J. C. Cuaresma, G. Doppelhofer, M. Feldkircher and F. Huber, Spillovers from US monetary policy: evidence from a time varying parameter global vector autoregressive model, J. R. Stat. Soc. A Stat. 182(3) (2019), 831-861. [14] C. De Boor, A Practical Guide to Splines, Springer-Verlag, New York, 2001. [15] G. L. Fan, H. Y. Liang and J. F. Wang, Statistical inference for partially time-varying coefficient errors-in-variables models, J. Stat. Plan. Infer. 143(3) (2013), 505-519. [16] J. Fan and I. Gijbels, Local Polynomial Modelling and its Applications, Chapman and Hall, London, 1996. [17] Y. Grenier, Time-dependent ARMA modeling of nonstationary signals, IEEE Trans. Acoustics, Speech and Signal Processing 31(4) (1983), 899-911. [18] D. N. Gujarati and D. C. Porter, Essentials of Econometrics, 4th ed, McGraw-Hill/Irwin, New York, 2010. [19] V. Haggan and T. Ozaki, Modelling nonlinear random vibrations using an amplitude-dependent autoregressive time series model, Biometrika 68(1) (1981), 189-196. [20] T. Hastie and R. Tibshirani, Varying-coefficient models, J. R. Stat. Soc. B 55(4) (1993), 757-796. [21] D. F. Hendry, A. R. Pagan and J. D. Sargan, Dynamic specification, Z. Griliches and M. D. Intriligator, eds., Handbook of Econometrics, Vol. II, Elsevier, Amsterdam, 1984, pp. 1023-1100. [22] L. Hu, T. Huang and J. You, Two-step estimation of time-varying additive model for locally stationary time series, Comput. Stat. Data Anal. 130 (2019), 94-110. [23] J. Z. Huang and H. P. Shen, Functional coefficient regression models for non-linear time series: a polynomial spline approach, Scand. J. Stat. 31(4) (2004), 515-534. [24] J. Jiang, Multivariate functional-coefficient regression models for nonlinear vector time series data, Biometrika 101(3) (2014), 689-702. [25] S. Karmakar, S. Richter and W. B. Wu, Simultaneous inference for time-varying models, J. Econometrics 227(2) (2022), 408-428. [26] S. Kim, Z. Zhao and Z. Xiao, Efficient estimation for time-varying coefficient longitudinal models, J. Nonparametr. Stat. 30(3) (2018), 680-702. [27] D. Li, J. Chen and Z. Lin, Statistical inference in partially time-varying coefficient models, J. Stat. Plan. Infer. 141(2) (2011), 995-1013. [28] D. Li, P. C. B. Phillips and J. Gao, Kernel-based inference in time-varying coefficient cointegrating regression, J. Econometrics 215(2) (2020), 607-632. [29] X. Liu, Z. Cai and R. Chen, Functional coefficient seasonal time series models with an application of Hawaii tourism data, Comput. Stat. 30 (2015), 719-744. [30] D. F. Nicholls and B. G. Quinn, Random Coefficient Autoregressive Models: An Introduction (Lecture Notes in Statistics II), Springer, New York, 1982. [31] A. Q. Philips, Have your cake and eat it too? Cointegration and dynamic inference from autoregressive distributed lag models, Am. J. Polit. Sci. 62(1) (2018), 230-244. [32] M. B. Priestley, State-dependent models: a general approach to non-linear time series analysis, J. Time Ser. Anal. 1(1) (1980), 47-71. [33] J. O. Ramsay and B. W. Silverman, Functional Data Analysis, Springer-Verlag, New York, 1997. [34] P. M. Robinson, Nonparametric estimation of time-varying parameters, Statistical Analysis and Forecasting of Economic Structural Change, P. Hackl, ed., Springer-Verlag, Berlin, 1989, pp. 253-264. [35] Y. Shin and M. Thornton, The spatio-temporal autoregressive distributed lag modelling approach to an analysis of the spatial heterogeneity and diffusion dependence, University of York, Mimeo, 2019. [36] Y. Shin, B. Yu and M. J. Greenwood-Nimmo, Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework, W. Horrace and R. Sickles, eds., Festschrift in Honor of Peter Schmidt: Econometric Methods and Applications, Springer Science and Business Media, New York, NY, 2014, pp. 281-314. [37] R. H. Shumway and D. Stoffer, Time Series Analysis and its Applications, 4th ed., Springer-Verlag, New York, 2017. [38] T. Subba Rao, The fitting of non-stationary time-series models with time-dependent parameters, J. R. Stat. Soc. B 32(2) (1970), 312-322. [39] L. Tian, D. Zucher and L. J. Wei, On the Cox model with time-varying regression coefficients, J. Amer. Stat. Assoc. 100(469) (2005), 172-183. [40] H. Tong, Threshold models in non-linear time series analysis, Lecture Notes in Statistics, Springer-Verlag, New York, 1983. [41] H. Tong, Nonlinear Time Series: A Dynamical System Approach, Oxford University Press, Oxford, 1990. [42] Y. Tu and Y. Wang, Functional coefficient cointegration models subject to time-varying volatility with an application to the purchasing power parity, Oxford Bull. Econ. Stat. 81(6) (2019), 1401-1423. [43] M. R. Wickens and T. S. Breusch, Dynamic specification, the long-run and the estimation of transformed regression models, The Economic Journal 98(390) (1988), 189-205. [44] K. Yousuf and S. Ng, Boosting high dimensional predictive regressions with time varying parameters, J. Econometrics 224(1) (2021), 60-87. [45] T. Zhang and W. B. Wu, Inference of time-varying regression models, Ann. Stat. 40(3) (2012), 1376-1402. [46] W. Zhang, S. Y. Lee and X. Song, Local polynomial fitting in semivarying coefficient model, J. Multivariate Anal. 82(1) (2002), 166-188. [47] Y. Zhou and H. Liang, Statistical inference for semiparametric varying-coefficient partially linear models with error-prone linear covariates, Ann. Stat. 37(1) (2009), 427-458.
|