Keywords and phrases: jet impingement, SST k-ω, turbulent intensity, Nusselt number, ANN.
Received: July 20, 2023; Revised: September 22, 2023; Accepted: October 31, 2023; Published: November 21, 2023
How to cite this article: B. Venkata Sai Raghu Vamsi, P. Raveendiran and Malladi R. Ch. Sastry, Heat transfer prediction in impinging jets using artificial neural networks, JP Journal of Heat and Mass Transfer 36 (2023), 103-142. http://dx.doi.org/10.17654/0973576323055
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] Jungho Lee and Sang-Joon Lee, The effect of nozzle aspect ratio on stagnation region heat transfer characteristics of elliptic impinging jet, International Journal of Heat and Mass Transfer 43 (2000), 555-575. [2] Dae Hee Lee, Jeonghoon Song and Myeong Chan Jo, The effects of nozzle diameter on impinging jet heat transfer and fluid flow, Transactions of the ASME 126 (2044), 554-557. [3] Shuichi Torii, Numerical study on thermal-fluid flow characteristics of dual impinging jet in inclined confinement channel, JP Journal of Heat and Mass Transfer 3(1) (2007), 233-250. [4] Vadiraj Katti and S. V. Prabhu, Experimental study and theoretical analysis of local heat transfer distribution between smooth flat surface and impinging air jet from a circular straight pipe nozzle, International Journal of Heat and Mass Transfer 51 (2008), 4480-4495. [5] Mirko Bovo and Lars Davidson, On the numerical modeling of impinging jets heat transfer-a practical approach, Numerical Heat Transfer, Part A 64 (2013), 290-316. [6] G. Nasif, R. M. Barron, R. Balachandar and O. Iqbal, Simulation of jet impingement heat transfer, Proceedings of the ASME 2013 Internal Combustion Engine Division Fall Technical Conference, ICEF2013, 2013, pp. 13-16. [7] L. V. Kamble, D. R. Pangavhane and T. P. Singh, Heat transfer studies using artificial neural network - a review, International Energy Journal 14 (2014), 25-42. [8] Nitin Kumar, Anil Kumar, Robin Thakur, Ankit Thakur and Raj Kumar, Comparative study of hydrodynamic and thermal performance of different air jets impingement solar air collector, JP Journal of Heat and Mass Transfer 15(4) (2018), 829-845. [9] Ketan Atulkumar Ganatra and Dushyant Singh, Comparison of various RANS models for impinging round jet cooling from a cylinder, J. Heat Transfer 141(6) (2019), 064503. [10] Dushyant Singh, B. Premachandran and Sangeeta Kohli, Numerical simulation of the jet impingement cooling of a circular cylinder, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology 64(2) (2013), 153-185. [11] Joseph Issac, Dushyant Singh and Saurabh Kango, Experimental and numerical investigation of heat transfer characteristics of jet impingement on a flat plate, Heat and Mass Transfer 56 (2020), 531-546. doi: org/10.1007/s00231-019-02724-9. [12] P. Naphon, S. Wiriyasart, T. Arisariyawong and L. Nakharintr, ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink, International Journal of Heat and Mass Transfer 131 (2019), 329-340. [13] Alankrita Singh, Numerical investigation on location of protrusions and dimples during slot jet impingement on a concave surface using hybrid ANN-GA, Heat Transfer 50 (2021), 1171-1197. [14] Alankrita Singh, Balaji Chakravarthy and B. Prasad, Numerical simulations and optimization of impinging jet configuration, International Journal of Numerical Methods for Heat and Fluid Flow 31 (2021), 1-25. doi:10.1108/HFF-01-2020-0053. [15] Gaurav Krishnayatra, Sulekh Tokas and Rajesh Kumar, Numerical heat transfer analysis and predicting thermal performance of fins for a novel heat exchanger using machine learning, Case Studies in Thermal Engineering 21 (2020), 100706. [16] Beomjin Kwon, Faizan Ejaz and Leslie K. Hwang, Machine learning for heat transfer correlations, International Communications in Heat and Mass Transfer 116 (2020), 104694. [17] Ketan Atulkumar Ganatra and Dushyant Singh, Numerical investigation of effect of semi-circular confinement bottom opening angle for slot jet impingement cooling on heated cylinder, International Journal of Thermal Sciences 149 (2020), 106148. [18] Suvanjan Bhattacharyya, Debraj Sarkar, Rahul Roy, Shramona Chakraborty, Varun Goel and Eydhah Almatraf, Application of new artificial neural network to predict heat transfer and thermal performance of a solar air-heater tube, Sustainability 13 (2021), 7477. doi.org/10.3390/su13137477. [19] Jaykumar Joshi and Santosh Kumar Sahu, Heat transfer characteristics of flat and concave surfaces by circular and elliptical jet impingement, Experimental Heat Transfer 35 (2022), 938-963. doi:10.1080/08916152.2021.1995082. [20] Dushyant Singh, Udayraj, Ashutosh Narayan Singh and Jishnu Handique, Experimental and LES study of unconfined jet impingement on a smooth flat heated plate with slots of different widths, Experimental Heat Transfer (2022), 1-40. https://doi.org/10.1080/08916152.2022.2096153. [21] Youngsuk Oh and Zhixiong Guo, Prediction of Nusselt number in microscale pin fin heat sinks using artificial neural networks, Heat Transfer Research 54(1) (2023), 41-55. doi: 10.1615/HeatTransRes.2022044987. [22] Matthew T. Hughes, Girish Kini and Srinivas Garimella, Status, challenges, and potential for machine learning in understanding and applying heat transfer phenomena, Journal of Heat Transfer 143 (2021), 120802. [23] D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel and T. L. Veith, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, American Society of Agricultural and Biological Engineers 50(3) (2007), 885-900. [24] T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang and J. Zhu, A new k-ε eddy viscosity model for high Reynolds number turbulent flows, NASA Lewis Res. Centre 24 (1995), 227-238. [25] V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski and C. G. Speziale, Development of turbulence models for shear flows by a double expansion technique, AIP Phys. Fluids 4 (1992), 1510-1520. [26] D. C. Wilcox, Re-assessment of the scale-determining equation for advanced turbulence models, AIAA J. 26 (1988), 1299-1310. [27] F. Menter and T. Esch, Elements of industrial heat transfer predictions, 16th Brazilian Congress of Mechanical Engineering, Vol. 20, 2001, pp. 117-127. [28] F. R. Menter, M. Kuntz and R. Langtry, Ten years of industrial experience with the SST turbulence model, Turbulence-heat and Mass Transfer, K. Hanjalic, Y. Nagano and M. Tummers, eds., Begell House Inc., Redding, CT, 2003, pp. 625-632.
|