Keywords and phrases: compressed earth block, cork, lime, construction, thermal conductivity, mechanical strength.
Received: August 30, 2023; Accepted: October 12, 2023; Published: November 21, 2023
How to cite this article: M. Kheltent, S. Nasla, Y. El Maatoufi, Y. Jamil, M. Laatar, H. Lbakhkhouch, K. Gueraoui and M. Cherraj, Influence of the size and amount of cork particles and lime on the mechanical and thermal characterizations of soil-based compressed earth blocks from Marrakech-Safi region in Morocco, JP Journal of Heat and Mass Transfer 36 (2023), 19-36. http://dx.doi.org/10.17654/0973576323050
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References [1] F. V. Riza, I. Abdul Rahman and A. M. A. Zaidi, Preliminary study of compressed stabilized earth brick (CSEB), Austr. J. Basic Appl. Sci. 5(9) (2011), 6-12. [2] I. Alam, A. Naseer and A. A. Shah, Economical stabilization of clay for earth buildings construction in rainy and flood prone areas, Constr. Build. Mater. 77 (2015), 154-159. [3] C. A. De Chazelles, K. Alain and N. Pousthomis, The constructive cultures of raw brick, Éditions de l’Espérou, National School of Architecture of Montpellier, Montpellier, 2011. [4] V. Rigassi, Compressed earth blocks, Manual of Production, Vol. I, CRATerre- EAG, Germany, 1995. [5] A. Guettala, H. Houari, B. Mezghiche and R. Chebili, Durability of lime stabilized earth blocks, Courrier du Savoir 2 (2002), 61-66. [6] K. Bougtaib, Y. Jamil, S. Nasla, K. Gueraoui and M. Cherraj, Compressed earth blocks reinforced with fibers (doum palm) and stabilized with lime: manual compaction procedure and influence of addition on mechanical properties and durability, JP Journal of Heat and Mass Transfer 26 (2022), 157-177. [7] Y. Jamil, S. Nasla, K. Bougtaib, K. Gueraoui and M. Cherraj, The effect of the sisal fiber content of agave and/or lime on the mechanical and thermal characterizations of soil-based compressed earth blocks from the province of Rehamna in Morocco, JP Journal of Heat and Mass Transfer 24(2) (2021), 207-226. [8] A. Filali Adib, Y. Jamil, S. Nasla, K. Bougtaib, Y. El Maatoufi, K. Gueraoui and M. Cherraj, The physico-chemical properties of concretes based on local sands in the Marrakech-Safi region in Morocco, JP Journal of Heat and Mass Transfer 30 (2022), 33-43. [9] A. A. Raheem, O. A. Bello and O. A. Makinde, A comparative study of cement and lime stabilized lateritic interlocking blocks, Pacific J. Sci. Technol. 11 (2010), 27-34. [10] A. Bouchkarem, N. Zakham, S. Nasla, Y. Jamil, Y. El Maatoufi, K. Bougtaib, K. Gueraoui and M. Cherraj, Evaluation of the influence of different dosages of cement on the thermal conductivity with different thermal parameters of CEBs, JP Journal of Heat and Mass Transfer 29 (2022), 163-178. [11] L. Miqueleiz, F. Ramírez, A. Seco, R. M. Nidzam, J. M. Kinuthia, A. A. Tair and R. A. Garcia, The use of stabilized Spanish clay soil for sustainable construction materials, Eng. Geol. 133-134 (2012), 9-15. [12] H. B. Nagaraj, M. V. Sravan, T. G. Arun and K. S. Jagadish, Role of lime with cement in long-term strength of compressed stabilized earth blocks, Int. J. Sustain. Built Environ. 3 (2014), 54-61. [13] A. Filali Adib, S. Nasla, Y. Jamil, Y. El Maatoufi, K. Bougtaib, M. Kheltent, K. Gueraoui, G. Debenest and M. Cherraj, The effect of crushed sand from the Marrakech region of Morocco on the durability of compressed earth concrete (CEC), JP Journal of Heat and Mass Transfer 32 (2023), 83-94. [14] S. Imanzadeh, A. Hibouche, A. Jarno and S. Taibi, Formulating and optimizing the compressive strength of a raw earth concrete by mixture design, Constr. Build. Mater. 163 (2018), 149-159. [15] S. Nasla, K. Gueraoui, M. Cherraj, Y. Jamil and K. Bougtaib, Technical studies of adobe bricks stabilize with lime from the quarry of the commune of Had Laghoualem in Morocco, International Journal on Engineering Applications 9(1) (2021), 1-7. [16] K. Bougtaib, S. Nasla, Y. Jamil, K. Gueraoui and M. Cherraj, Impact of rate of addition (fibers and/or binders) on the thermomechanical properties of compressed earth blocks made up according to two methods of compaction, JP Journal of Heat and Mass Transfer 27 (2022), 77-96. [17] X.-F. Chen and C.-J. Jiao, Microstructure and physical properties of concrete containing recycled aggregates pre-treated by a nano-silica soaking method, Build. Eng. 51 (2022), 104363. [18] Y. El Maatoufi, S. Nasla, K. Gueraoui and M. Cherraj, Characterization and valorization of clay deposits in the region of El Gharb (Machraa Belksiri) in Morocco, for building material industry use, JP Journal of Heat and Mass Transfer 25 (2022), 61-72. [19] S. Nasla, K. Gueraoui, M. Cherraj, A. Samaouali, E. Nchiti, Y. Jamil, O. Arab and K. Bougtaib, An experimental study of the effect of pine needles and straw fibers on the mechanical behavior and thermal conductivity of adobe earth blocks with chemical analysis, JP Journal of Heat and Mass Transfer 23(1) (2021), 35-56. http://dx.doi.org/10.17654/HM023010035. [20] Y. El Maatoufi, S. Nasla, Y. Jamil, K. Gueraoui and M. Cherraj, Study of the effect of stabilization, by lime and sugarcane fibers, on the physico-mechanical and thermal properties of compressed earth blocks (CEB) used in the construction of a soil from El Gharb in Morocco, JP Journal of Heat and Mass Transfer 26 (2022), 61-80. [21] Y. Jamil, S. Nasla, K. Bougtaib, K. Gueraoui and M. Cherraj, The influence of compaction stress and alfa fiber content on the physico-chemical characterization of compressed earth blocks (CEB), JP Journal of Heat and Mass Transfer 24(2) (2021), 265-282. [22] L. Gibson, K. Easterling and M. Ashby, The structure and mechanics of cork, Proc. R. Soc. London A 377 (1981), 99-117. doi:10.1007/s10853-011-5914-9. [23] M. A. Fortes and M. T. Nogueira, The Poisson effect in cork, Mater. Sci. Eng. A 122 (1989), 227-232. [24] J. F. Mano, The viscoelastic properties of cork, J. Mater. Sci. 37 (2002), 257-263. doi:10.1023/A:1013635809035. [25] XP P94-041: Recognition and tests - Particle size identification - Wet sieving method, AFNOR, 1995. [26] NF P94-057: Reconnaissance and tests - Particle size analysis of soils - Sedimentation method, AFNOR, 1992. [27] H. Houben, V. Rigassi and P. Gamier, Compressed earth blocks production equipment, Manual, CDI & CRATerre, 2nd ed., Brussels, 1996. [28] NF P94-051: Determination of Atterberg limits, AFNOR, March 1993. [29] NF P94-068: Measurement of the quantity and activity of the clay fraction, Determination of the methylene blue value of a soil by the task test, AFNOR, 1993. [30] NM 13.1.023, Sols: Reconnaissance et essais Determination des References de Compactage d un Materiau Essai Proctor Normal Essai Proctor Modifie, IMANOR: Rabat, Morocco, 2019. [31] AFNOR, XP P13-901; Compressed earth blocks for walls and partitions: Definitions - Specifications - Test methods - Acceptance conditions, Saint-Denis La Plaine Cedex: AFNOR, 2001. [32] S. K. S. Ma and Y. Qian, Performance-based study on the rheological and hardened properties of blended cement mortars incorporating palygorskite clays and carbon nanotubes, Constr. Build. Mater. 171 (2018), 663-671. [33] J. E. Oti, J. M. Kinuthia and J. Bai, Engineering properties of unfired clay masonry bricks, Eng. Geol. 107 (2009), 130-139. [34] M. Olivier Boffoue, K. Clement Kouadio, C. Kouakou, A. Assande, A. Dauscher, B. Lenoir and E. Emeruwa, Influence of cement content on the thermomechanical properties of compressed and stabilized clay blocks, Africa Science 11(2) (2015), 35-43. [35] A. Lyons, Lime, cement and concrete, Materials for Architects and Builders, Routledge: Oxfordshire, UK, 2020, pp. 79-138. [36] S. P. Silva, M. A. Sabino, E. M. Fernandes, V. M. Correlo, L. F. Boesel and R. L. Reis, Cork: properties, capabilities and applications, International Materials Reviews 50(6) (2005), 345-365. [37] J.-P. T. K. Taj-Eddine, J. Rey, J. Canérot and B. Peybernés, Lithostratigraphy, biostratigraphy and sedimentary dynamics of the lower cretaceous deposits on the northern side of the western High Atlas (Morocco), Cretac. Res. (1988), 141-158. [38] R. Gundu, Carbonate/clay-mineral relationships and the origin of protodolomite in l-2 and l-3 carbonate reservoir rocks of the Bombay High Oil Field, India, Sediment. Geol. 29 (1981), 223-232. [39] L. Guering, Low-cost construction in special public works programs, Guiding Principles for the Use of Raw Earth, International Labor Office, Geneva, Switzerland, 1985. [40] J. K. Prusty and S. K. Patro, Properties of fresh and hardened concrete using agrowaste as partial replacement of coarse aggregate - a review, Constr. Build. Mater. 82 (2015), 101-113. https://doi.org/10.1016/j.conbuildmat.2015.02.063. [41] N. Liu and B. Chen, Experimental study of the influence of EPS particle size on the mechanical properties of EPS lightweight concrete, Constr. Build. Mater. 68 (2014), 227-232. [42] J. I. Sim, K. H. Yang, H. Y. Kim and B. J. Choi, Size and shape effects on compressive strength of lightweight concrete, Constr. Build. Mater. 38 (2013), 854-864. [43] RILEM, Functional classification of lightweight concrete, Recommendations of RILEM LC2 11 (1978), 281-283. [44] D. D. B. Le Runigo, O. Cuisinier, Y.-J. Cui and V. Ferber, Impact of initial state on the fabric and permeability of a lime-treated silt under long-term leaching, Can. Geotech. J. 46 (2009), 1243-1257.
|