Keywords and phrases: linear functional, normed spaces, inner product spaces, complete metric space, nonexpansive mapping, fixed point, fixed point.
Received: July 16, 2023; Accepted: September 21, 2023; Published: November 9, 2023
How to cite this article: Basel Hardan, Jayashree Patil, Ahmed A. Hamoud, Homan Emadifar and Alaa A. Abdallah, Modified Hardy-Rogers-type fixed point theorem, JP Journal of Fixed Point Theory and Applications 19 (2023), 51-61. http://dx.doi.org/10.17654/0973422823004
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] Mujahed Abbas, Hassen Aydi and Stojan Radenovic, Fixed point of T-Hardy-Rogers contractive mappings in partially ordered partial metric spaces, Int. J. Math. Math. Sci. 2012 (2012), Article ID 313675, 11 pages. [2] S. Banach, Sur les operations’ dand les ensembles abstrait et leur application aux équations intégrales, Fundam. Math. 3 (1922), 133-181. [3] Cristian Chifu and Gabriela Patrusel, Fixed point results for multi valued Hardy-Rogers contractions in b-metric spaces, Filomat 31(8) (2017), 2499-2507. [4] G. E. Hardy and T. D. Rogers, A generalization of fixed point theorem of Reich, Canada. Math. Bull. 16(2) (1973), 201-206. [5] R. Kannan, Some remarks on fixed points, Bull Calcutta Math. Soc. 60 (1960), 71-76. [6] J. Patil, B. Hardan, M. Abdo, A. Chaudhari and A. Bachhav, Generalized fractional differential equations by using a fixed point theorem for generalized contractive type, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 28(2) (2021), 77-88. [7] J. Patil, B. Hardan, A. Hamoud, A. Bachhav and H. Emadifar, A new result on Branciari metric space using -contractive mappings, Topological Algebra and its Applications 10(1) (2022), 103-112. [8] Victoria Olisama, Johnson Olalern and Hudson Akewe, Best proximity point results for Hardy-Rogers p-proximal cyclic contraction in uniform spaces, Fixed Point Theory and Applications 18 (2018), 15 pp. [9] M. Rangamma and P. Rama Bhadra, Hardy and Rogers type contractive condition and common fixed point theorem in cone-2-metric space for a family of self-maps., Glob. J. Pure Appl. Math. 12(3) (2016), 2375-2385. [10] S. Reich, Kannan’s fixed point theorem, Bull. Univ. Mat. Italiana (4) 4 (1971), 1-11. [11] V. Rhymend and R. Hemavathyy, Common fixed point theorem for T-Hardy-Rogers contraction mapping in a cone metric space, Int. Math. Forum 5(30) (2010), 1495-1506. [12] Plern Saipara, Konorawt Khammahawong and Poom Kumam, Fixed-point theorem for a generalized almost Hardy-Rogers-type F contraction on metric-like spaces, Math. Methods Appl. Sci. 42 (2019), 5898-5919. doi.org/10.1002/mma.5793.
|