Keywords and phrases: climate change, renewables, solar energy, photovoltaics, perovskites, silicon-based photovoltaics, lead-halide perovskites, power conversion efficiency, solar energy efficiency, materials processing, device fabrication, roll-to-roll coating, spin coating, solvent processing, blade coating, slot-die coating, spray coating, inkjet printing, printable electronics, environmental concerns with renewables, materials process improvements.
Received: July 31, 2023; Accepted: September 9, 2023; Published: October 27, 2023
How to cite this article: Andrew Setley and C. P. Wong, Addressing the drawbacks of perovskite photovoltaics to improve solar energy technologies: a review, International Journal of Materials Engineering and Technology 22(2) (2023), 97-121. http://dx.doi.org/10.17654/0975044423007
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] National Oceanic and Atmospheric Administration (NOAA), Carbon dioxide now more than 50% higher than pre-industrial levels, NOAA News Release, 2023. https://www.noaa.gov/news-release/carbon-dioxide-now-more-than-50-higher-than-preindustrial-levels. [2] National Renewable Energy Laboratory (NREL), Photovoltaic Research: Solar Cell Efficiency, National Renewable Energy Laboratory (NREL), 2023. https://www.nrel.gov/pv/cell-efficiency.html. [3] Clean Energy Institute (CEI), University of Washington, Perovskites Solar Cell, Clean Energy Institute, University of Washington, 2020. https://www.cei.washington.edu/research/solar-energy/perovskites/. [4] S. S. Dipta and A. Uddin, Solar perovskite technologies, Reference Module in Earth Systems and Environmental Sciences, Elsevier, 2022, pp. 1-2. https://doi.org/10.1016/B978-0-323-90386-8.00015-2. [5] Faiza Jan Iftikhar et al., Structural and optoelectronic properties of hybrid halide perovskites for solar cells, Organic Electronics 91 (2021), 106077. https://doi.org/10.1016/j.orgel.2021.106077. [6] L. Chouhan, S. Ghimire, C. Subrahmanyam, T. Miyasaka and V. Biju, Synthesis, optoelectronic properties and applications of halide perovskites, Chemical Society Reviews 49(1) (2020), 2869-2885. https://doi.org/10.1039/c9cs00848a. [7] M. Nazeeruddin and H. Snaith, Methylammonium lead triiodide perovskite solar cells: a new paradigm in photovoltaics, MRS Bulletin 40(8) (2015), 641-645. https://doi.org/10.1557/mrs.2015.169. [8] I. Mora-Seró, How do perovskite solar cells work? Joule 2(4) (2018), 585-587. https://doi.org/10.1016/j.joule.2018.03.020. [9] Y. Li et al., Bandgap tuning strategy by cations and halide ions of lead halide perovskites learned from machine learning, RSC Advances 11(26) (2021), 15688-15694. https://doi.org/10.1039/d1ra03117a. [10] M. I. Saidaminov et al., High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization, Nature Communications 6 (2015), 7586. https://doi.org/10.1038/ncomms8586. [11] D. B. Straus and R. J. Cava, Tuning the band gap in the halide perovskite CsPbBr3 through Sr substitution, ACS Applied Materials and Interfaces 14(30) (2022), 34884-34890. https://doi.org/10.1021/acsami.2c09275. [12] Science, AMP Solar Cells: Scientists Ditch Silicon, Retrieved from https://www.science.org/content/article/amp-solar-cells-scientists-ditch-silicon. [13] U. S. Department of Energy, Solar Photovoltaic Manufacturing Basics, Retrieved from https://www.energy.gov/eere/solar/solar-photovoltaic-manufacturing-basics. [14] Z. Li et al., Scaling up perovskite photovoltaics: progress, challenges, and outlook of a transformational technology, U.S. Department of Energy, Office of Scientific and Technical Information, 2018. Retrieved from https://www.osti.gov/servlets/purl/1430821. [15] Z. Saki, M. M. Byranvand, N. Taghavinia, M. Kedia and M. Saliba, Solution-processed perovskite thin-films: the journey from lab- to large-scale solar cells, Energy and Environmental Science 14(11) (2021), 5690-5722. https://doi.org/10.1039/d1ee02018h. [16] Y. Vaynzof, The future of perovskite photovoltaics-thermal evaporation or solution processing? Advanced Energy Materials 10(48) (2020), 2003073. https://doi.org/10.1002/aenm.202003073. [17] J. Burschka et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature 499(7458) (2013), 316-319. https://doi.org/10.1038/nature12340. [18] National Renewable Energy Laboratory (NREL), Roll-to-roll manufacturing for perovskite solar cells, National Renewable Energy Laboratory (NREL). https://www.nrel.gov/manufacturing/roll-to-roll-multilab.html. [19] S. Khaliq and Z. Abbas, Theoretical analysis of blade coating process using simplified Phan‐Thien‐Tanner fluid model: an analytical study, Polymer Engineering and Science 61(1) (2021), 301-313. https://doi.org/10.1002/pen.25576. [20] X. Ding, J. Liu and T. A. L. Harris, A review of the operating limits in slot die coating processes, AIChE Journal 62(7) (2016), 2508-2524. https://doi.org/10.1002/aic.15268. [21] L.-H. Chou, J. M. W. Chan and C.-L. Liu, Progress in spray coated perovskite films for solar cell applications, Solar RRL 6(4) (2022), 2101035. https://doi.org/10.1002/solr.202101035. [22] F. Mathies, E. J. W. List-Kratochvil and E. L. Unger, Advances in inkjet‐printed metal halide perovskite photovoltaic and optoelectronic devices, Energy Technology 8(4) (2020), 1900991. https://doi.org/10.1002/ente.201900991. [23] Centers for Disease Control and Prevention, Health Effects of Lead, Retrieved from https://www.cdc.gov/nceh/lead/prevention/health-effects.htm. [24] M. Jaishankar et al., Toxicity, mechanism and health effects of some heavy metals, Interdisciplinary Toxicology 7(2) (2014), 60-72. https://doi.org/10.2478/intox-2014-0009. [25] I. Mesquita, L. Andrade and A. Mendes, Perovskite solar cells: materials, configurations and stability, Renewable and Sustainable Energy Reviews 82 (2018), 2471-2489. https://doi.org/10.1016/j.rser.2017.09.011. [26] C. E. Torrence et al., Environmental and health risks of perovskite solar modules: case for better test standards and risk mitigation solutions, Science 26(1) (2023), 105807. https://doi.org/10.1016/j.isci.2022.105807. [27] P. D. Dissanayake et al., Environmental impact of metal halide perovskite solar cells and potential mitigation strategies: a critical review, Environmental Research 219 (2023), 115066. https://doi.org/10.1016/j.envres.2022.115066. [28] B. Hailegnaw et al., Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells, The Journal of Physical Chemistry Letters 6(9) (2015), 1543-1547. https://doi.org/10.1021/acs.jpclett.5b00504. [29] L. Serrano-Lujan et al., Tin- and lead-based perovskite solar cells under scrutiny: an environmental perspective, Advanced Energy Materials 5(20) (2015), 1501119. https://doi.org/10.1002/aenm.201501119. [30] J. Li et al., Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold, Nature Communications 11(1) (2020), 310-315. https://doi.org/10.1038/s41467-019-13910-y. [31] J. C.-R. Ke et al., In situ investigation of degradation at organometal halide perovskite surfaces by X-ray photoelectron spectroscopy at realistic water vapour pressure, Chemical Communications 53(37) (2017), 5231-5234. https://doi.org/10.1039/c7cc01538k. [32] R. Wang et al., A review of perovskites solar cell stability, Advanced Functional Materials 29(47) (2019), 1808843. https://doi.org/10.1002/adfm.201808843. [33] D. Bryant et al., Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells, Energy and Environmental Science 9(5) (2016), 1655-1660. https://doi.org/10.1039/c6ee00409a. [34] A. M. A. Leguy et al., Reversible hydration of CH3NH3PbI3 in films, Single Crystals, and Solar Cells, Chemistry of Materials 27 (2015), 3397-3407. https://doi.org/10.1021/acs.chemmater.5b00660. [35] H.-S. Kim, J.-Y. Seo and N.-G. Park, Material and device stability in perovskite solar cells, ChemSusChem 9(18) (2016), 2528-2540. https://doi.org/10.1002/cssc.201600915. [36] M. F. Mohamad Noh et al., High-humidity processed perovskite solar cells, Journal of Materials Chemistry 8(21) (2020), 10481-10518. https://doi.org/10.1039/D0TA01178A. [37] A. B. Djurišić et al., Perovskite solar cells - an overview of critical issues, Progress in Quantum Electronics 53 (2017), 1-37. https://doi.org/10.1016/j.pquantelec.2017.05.002. [38] M. Lv et al., Improved photovoltaic performance in perovskite solar cells based on CH3NH3PbI3 films fabricated under controlled relative humidity, RSC Advances 5(114) (2015), 93957-93963. https://doi.org/10.1039/c5ra14587b. [39] X. Bao et al., High-performance inverted planar perovskite solar cells without a hole transport layer via a solution process under ambient conditions, Journal of Materials Chemistry 3(38) (2015), 19294-19298. https://doi.org/10.1039/C5TA05026J. [40] Z. Yang et al., High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition, Advanced Energy Materials 5(13) (2015), 1500328. https://doi.org/10.1002/aenm.201500328. [41] H.-S. Ko, J.-W. Lee and N.-G. Park, 15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3, Journal of Materials Chemistry 3(16) (2015), 8808-8815. https://doi.org/10.1039/C5TA00658A. [42] Q. Tai et al., Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity, Nature Communications 7(1) (2016), 11105-11105. https://doi.org/10.1038/ncomms11105. [43] B. Jeong et al., Humidity controlled crystallization of thin CH3NH3PbI3 films for high performance perovskite solar cell, Physica Status Solidi, PSS-RRL, Rapid Research Letters 10(5) (2016), 381-387. https://doi.org/10.1002/pssr.201600004. [44] G. E. Eperon et al., The importance of moisture in hybrid lead halide perovskite thin film fabrication, ACS Nano 9(9) (2015), 9380-9393. https://doi.org/10.1021/acsnano.5b03626. [45] F. Corsini and G. Griffini, Recent progress in encapsulation strategies to enhance the stability of organometal halide perovskite solar cells, J. Phys. Energy 2(3) (2020), 31002. https://doi.org/10.1088/2515-7655/ab8774. [46] C.-Y. Chang et al., High-performance, air-stable, low-temperature processed semitransparent perovskite solar cells enabled by atomic layer deposition, Chemistry of Materials 27(14) (2015), 5122-5130. [47] R. Hosseinian Ahangharnejhad et al., Protecting perovskite solar cells against moisture-induced degradation with sputtered inorganic barrier layers, ACS Applied Energy Materials 4(8) (2021), 7571-7578. https://doi.org/10.1021/acsaem.1c00816. [48] R. Singh et al., ALD Al2O3 on hybrid perovskite solar cells: unveiling the growth mechanism and long-term stability, Solar Energy Materials and Solar Cells 205 (2020), 110289. https://doi.org/10.1016/j.solmat.2019.110289. [49] Y. Jiang et al., Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation, Nature Energy 4(7) (2019), 585-593. https://doi.org/10.1038/s41560-019-0406-2. [50] X. Li et al., On-device lead sequestration for perovskite solar cells, Nature (London) 578(7796) (2020), 555-558. https://doi.org/10.1038/s41586-020-2001-x. [51] V. K. Ravi et al., Don’t let the lead out: new material chemistry approaches for sustainable lead halide perovskite solar cells, ACS Omega 5(46) (2020), 29631-29641. https://doi.org/10.1021/acsomega.0c04599. [52] K. Lochhead, E. Johlin and D. Yang, Encapsulation of perovskite solar cells with thin barrier films, IntechOpen, 2022. https://doi.org/10.5772/intechopen.107189. [53] B. McKenna et al., Enhancing the stability of organolead halide perovskite films through polymer encapsulation, RSC Advances 7(52) (2017), 32942-32951. https://doi.org/10.1039/C7RA06002E. [54] M. Kim et al., Antireflective, self-cleaning and protective film by continuous sputtering of a plasma polymer on inorganic multilayer for perovskite solar cells application, Solar Energy Materials and Solar Cells 191 (2019), 55-61. https://doi.org/10.1016/j.solmat.2018.10.020. [55] Y. I. Lee et al., A low‐temperature thin‐film encapsulation for enhanced stability of a highly efficient perovskite solar cell, Advanced Energy Materials 8(9) (2018), 1701928. https://doi.org/10.1002/aenm.201701928. [56] S. Maranghi et al., The critical issue of using lead for sustainable massive production of perovskite solar cells: a review of relevant literature, Open Res. Europe 1 (2021), 44. https://doi.org/10.12688/openreseurope.13428.1. [57] T. Krishnamoorthy et al., Lead-free germanium iodide perovskite materials for photovoltaic applications, Journal of Materials Chemistry 3(47) (2015), 23829-23832. https://doi.org/10.1039/C5TA05741H. [58] S. Blunden and T. Wallace, Tin in canned food: a review and understanding of occurrence and effect, Food and Chemical Toxicology 41(12) (2003), 1651-1662. https://doi.org/10.1016/S0278-6915(03)00217-5. [59] M. Chen et al., High-performance lead-free solar cells based on tin-halide perovskite thin films functionalized by a divalent organic cation, ACS Energy Letters 5(7) (2020), 2223-2230. https://doi.org/10.1021/acsenergylett.0c00888. [60] B. Yu et al., Heterogeneous 2D/3D tin‐halides perovskite solar cells with certified conversion efficiency breaking 14, Advanced Materials 33(36) (2021), 2102055. https://doi.org/10.1002/adma.202102055. [61] X. Jiang et al., Tin halide perovskite solar cells: an emerging thin-film photovoltaic technology, Accounts of Materials Research 2(4) (2021), 210-219. https://doi.org/10.1021/accountsmr.0c00111. [62] G. Nasti and A. Abate, Tin halide perovskite (ASnX3) solar cells: a comprehensive guide toward the highest power conversion efficiency, Advanced Energy Materials 10(13) (2020), 1902467. https://doi.org/10.1002/aenm.201902467. [63] N. K. Noel et al., Lead-free organic-inorganic tin halide perovskites for photovoltaic applications, Energy and Environmental Science 7(9) (2014), 3061-3068. https://doi.org/10.1039/C4EE01076K. [64] B. Yu et al., Oriented crystallization of mixed‐cation tin halides for highly efficient and stable lead‐free perovskite solar cells, Advanced Functional Materials 30(24) (2020), 2002230. https://doi.org/10.1002/adfm.202002230. [65] S. J. Lee et al., Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2-pyrazine complex, Journal of the American Chemical Society 138(12) (2016), 3974-3977. https://doi.org/10.1021/jacs.6b00142. [66] P. Fassl et al., Fractional deviations in precursor stoichiometry dictate the properties, performance and stability of perovskite photovoltaic devices, Energy and Environmental Science 11(12) (2018), 3380-3391. https://doi.org/10.1039/c8ee01136b. [67] J. Euvrard, Y. Yan and D. B. Mitzi, Electrical doping in halide perovskites, Nat. Rev. Mater. 6 (2021), 531-549. https://doi.org/10.1038/s41578-021-00286-z. [68] R. Singh, M. Kumar and V. K. Shukla, Improving the PCE and stability of planar perovskite solar cells via small molecule doping, Journal of Electronic Materials 47(11) (2018), 6894-6900. https://doi.org/10.1007/s11664-018-6614-x. [69] C.-Y. Chang et al., High-efficiency bulk heterojunction perovskite solar cell fabricated by one-step solution process using single solvent: synthesis and characterization of material and film formation mechanism, Journal of Materials Chemistry A 6 (2018), 4179-4188. https://doi.org/10.1039/C7TA07939G. [70] H. Chen et al., Regulating surface potential maximizes voltage in all-perovskite tandems, Nature 613 (2023), 676-681. https://doi.org/10.1038/s41586-022-05541-z. [71] C. Chen, S. Zheng and H. Song, Photon management to reduce energy loss in perovskite solar cells, Chemical Society Reviews 5(12) (2021), 725-7329. https://doi.org/10.1039/d0cs01488e. [72] R. Singh et al., Mixed solvent engineering to optimize morphology and optical properties of perovskite thin films for an efficient solar cell, The Physics of Semiconductor Devices, Springer International Publishing, 2019, pp. 309-313. https://doi.org/10.1007/978-3-319-97604-4_47. [73] M. M. Lee et al., Efficient hybrid solar cells based on meso-super-structured organometal halide perovskites, Science 338 (2012), 643-647. https://doi.org/10.1126/science.1228604. [74] S. Bae et al., Controlling the morphology of organic-inorganic hybrid perovskites through dual additive-mediated crystallization for solar cell applications, ACS Applied Materials and Interfaces 11(19) (2019), 17452-17458. https://doi.org/10.1021/acsami.9b03929. [75] Q. Luo et al., Enhancing photovoltaic performance of perovskite solar cells with silica nanosphere antireflection coatings, Solar Energy 169 (2018), 128-135. https://doi.org/10.1016/j.solener.2018.04.044. [76] L. Shen et al., Bulk heterojunction perovskite solar cells incorporated with p-type low optical gap conjugated polymers, Nano Energy 93 (2022), 106907. https://doi.org/10.1016/j.nanoen.2021.106907. [77] S. Li et al., A brief review of hole transporting materials commonly used in perovskite solar cells, Rare Metals 40 (2021), 2712-2729. https://doi.org/10.1007/s12598-020-01691-z. [78] F. Zhang et al., Enhanced perovskite morphology and crystallinity for high performance perovskite solar cells using a porous hole transport layer from polystyrene nanospheres, Physical Chemistry Chemical Physics : PCCP 18(48) (2016), 32903-32909. https://doi.org/10.1039/c6cp06405a. [79] N. J. Jeon et al., Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials, Journal of the American Chemical Society 135(51) (2013), 19087-19090. https://doi.org/10.1021/ja410659k.
|