Keywords and phrases: clique, neighborhood system, clique neighborhood polynomial.
Received: September 14, 2023; Accepted: October 9, 2023; Published: October 21, 2023
How to cite this article: Alcyn R. Bakkang, Regimar A. Rasid and Rosalio G. Artes, Jr., Combinatorial approach in counting the neighbors of cliques in a graph, Advances and Applications in Discrete Mathematics 40(2) (2023), 167-175. http://dx.doi.org/10.17654/0974165823063
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] N. Abdulcarim, S. Dagondon and E. Chacon, On the independent neighborhood polynomial of the Cartesian product of some special graphs, Eur. J. Pure Appl. Math. 14(1) (2021), 173-191. https://doi.org/10.29020/nybg.ejpam.v14i1.3860. [2] R. A. Anunciado and R. G. Artes, Jr., Connected dominating independent neighborhood polynomial of graphs, Advances and Applications in Discrete Mathematics 39(1) (2023), 73-80. https://doi.org/10.17654/0974165823036. [3] A. L. Arriesgado and R. G. Artes, Jr., Convex independent common neighborhood polynomial of a graph, Advances and Applications in Discrete Mathematics 38(2) (2023), 145-158. https://doi.org/10.17654/0974165823025. [4] A. L. Arriesgado, S. C. Abdurasid and R. G. Artes, Jr., Connected common neighborhood systems of cliques in a graph: a polynomial representation, Advances and Applications in Discrete Mathematics 38(1) (2023), 69-81. https://doi.org/10.17654/0974165823019. [5] A. L. Arriesgado, J. I. C. Salim and R. G. Artes, Jr., Clique connected common neighborhood polynomial of the join of graphs, International Journal of Mathematics and Computer Science 18(4) (2023), 655-659. [6] R. G. Artes, Jr., N. H. R. Mohammad, A. A. Laja and N. H. M. Hassan, From graphs to polynomial rings: star polynomial representation of graphs, Advances and Applications in Discrete Mathematics 37 (2023), 67-76. https://doi.org/10.17654/0974165823012. [7] R. G. Artes, Jr., A. J. U. Abubakar and S. U. Kamdon, Polynomial representations of the biclique neighborhood of graphs, Advances and Applications in Discrete Mathematics 37 (2023), 37-45. http://dx.doi.org/10.17654/0974165823010. [8] R. G. Artes, Jr. and M. J. F. Luga, Convex accessibility in graphs, Applied Mathematical Sciences 8(88) (2014), 4361-4366. http://dx.doi.org/10.12988/ams.2014.46467. [9] R. G. Artes, Jr. and M. J. F. Luga, Convex accessibility in graph operations, Applied Mathematical Sciences 8(116) (2014), 5763-5770. http://dx.doi.org/10.12988/ams.2014.47553. [10] R. G. Artes, Jr., N. H. R. Mohammad, Z. H. Dael and H. B. Copel, Star polynomial of the corona of graphs, Advances and Applications in Discrete Mathematics 39(1) (2023), 81-87. https://doi.org/10.17654/0974165823037. [11] R. G. Artes, Jr., R. H. Moh. Jiripa and J. I. C. Salim, Connected total dominating neighborhood polynomial of graphs, Advances and Applications in Discrete Mathematics 39(2) (2023), 145-154. http://dx.doi.org/10.17654/0974165823042. [12] R. G. Artes, Jr. and J. B. Nalzaro, Combinatorial approach for counting geodetic sets with subdominating neighborhoods systems, Advances and Applications in Discrete Mathematics 38(2) (2023), 179-189. https://doi.org/10.17654/0974165823027. [13] R. G. Artes, Jr. and R. A. Rasid, Balanced biclique polynomial of graphs, Global Journal of Pure and Applied Mathematics 12(5) (2016), 4427-4433. [14] R. G. Artes, Jr. and R. A. Rasid, Combinatorial approach in counting the balanced bicliques in the join and corona of graphs, Journal of Ultra Scientist of Physical Sciences 29(5) (2017), 192-195. [15] J. I. Brown and R. J. Nowakowski, The neighbourhood polynomial of a graph, Australian Journal of Combinatorics 42 (2008), 55-68. [16] J. Ellis-Monaghan and J. Merino, Graph Polynomials and their Applications II: Interrelations and Interpretations, Birkhauser, Boston, 2011. [17] E. J. Farell, A note on the clique polynomial and its relation to other graph polynomials, J. Math. Sci. Calcutta 8 (1997), 97-102. [18] F. Harary, Graph Theory, CRC Press, Boca Raton, 2018. [19] C. Hoede and X. Li, Clique polynomials and independent set polynomials of graphs, Discrete Mathematics 125 (1994), 219-228. [20] R. E. Madalim, R. G. Eballe, A. H. Arajaini and R. G. Artes, Jr., Induced cycle polynomial of a graph, Advances and Applications in Discrete Mathematics 38(1) (2023), 83-94. https://doi.org/10.17654/0974165823020. [21] M. A. Langamin, A. B. Calib-og and R. G. Artes, Jr., Clique common neighborhood polynomial of graphs, Advances and Applications in Discrete Mathematics 35 (2022), 77-85. https://doi.org/10.17654/0974165822053. [22] L. S. Laja and R. G. Artes, Jr., Zeros of convex subgraph polynomials, Applied Mathematical Sciences 8(59) (2014), 2917-2923. http://dx.doi.org/10.12988/ams.2014.44285. [23] L. S. Laja and R. G. Artes, Jr., Convex subgraph polynomials of the join and the composition of graphs, International Journal of Mathematical Analysis 10(11) (2016), 515-529. http://dx.doi.org/10.12988/ijma.2016.512296. [24] C. A. Villarta, R. G. Eballe and R. G. Artes, Jr., Induced path polynomial of graphs, Advances and Applications in Discrete Mathematics 39(2) (2023), 183-190. https://doi.org/10.17654/0974165823045. [25] A. Vijayan and K. D. Vijila, On geodetic sets and polynomials of centipedes, International Journal of Mathematical Archive 3(5) (2012), 1885-1894. [26] Y. Wang and B. Zhu, On the unimodality of independence polynomials of some graphs, European Journal of Combinatorics 30 (2011), 10-20.
|