Keywords and phrases: medians, neutrosophy, Duckworth’s test, classical statistics, simulation.
Received: August 7, 2023; Accepted: September 25, 2023; Published: October 21, 2023
How to cite this article: Muhammad Aslam and Muhammad Saleem, Analysis of corona patients using uncertainty-based non-parametric median test, JP Journal of Biostatistics 23(3) (2023), 315-327. http://dx.doi.org/10.17654/0973514323018
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] M. Abdel-Basset, A. Atef and F. Smarandache, A hybrid neutrosophic multiple criteria group decision making approach for project selection, Cognitive Systems Research 57 (2019), 216-227. [2] M. Abdel-Basset, M. Mohamed, M. Elhoseny, F. Chiclana and A. E.-N. H. Zaied, Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases, Artificial Intelligence in Medicine 101 (2019), 101735. [3] M. Abdel-Basset, N. A. Nabeeh, H. A. El-Ghareeb and A. Aboelfetouh, Utilising neutrosophic theory to solve transition difficulties of IoT-based enterprises, Enterprise Information Systems 14(9-10) (2020), 1304-1324. [4] M. Aslam, Introducing Kolmogorov-Smirnov tests under uncertainty: an application to radioactive data, ACS Omega 5(1) (2019), 914-917. [5] M. Aslam, Neutrosophic analysis of variance: application to university students, Complex and Intelligent Systems 5(4) (2019), 403-407. [6] M. Aslam, Design of the Bartlett and Hartley tests for homogeneity of variances under indeterminacy environment, Journal of Taibah University for Science 14(1) (2020), 6-10. [7] M. Aslam, Radar data analysis in the presence of uncertainty, European Journal of Remote Sensing 54(1) (2021), 140-144. [8] S. Broumi, A. Bakali, M. Talea, F. Smarandache and K. Ullah, Bipolar neutrosophic minimum spanning tree, Infinite Study 127 (2018). [9] S. Broumi and F. Smarandache, Correlation coefficient of interval neutrosophic set, Applied Mechanics and Materials 436 (2013), 511-517. [10] J. Chen, J. Ye and S. Du, Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics, Symmetry 9(10) (2017), 208. [11] J. Chen, J. Ye, S. Du and R. Yong, Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers, Symmetry 9(7) (2017), 123. [12] J. de Winter and D. Dodou, Five-point Likert items: t test versus Mann-Whitney-Wilcoxon (Addendum added: October 2012), Practical Assessment, Research, and Evaluation 15(1) (2010), 11. [13] T. Denœux, M.-H. Masson and P.-A. Hébert, Nonparametric rank-based statistics and significance tests for fuzzy data, Fuzzy Sets and Systems 153(1) (2005), 1-28. [14] D. Dubois and H. Prade, Ranking fuzzy numbers in the setting of possibility theory, Information Sciences 30(3) (1983), 183-224. [15] D. Feng, G. Cortese and R. Baumgartner, A comparison of confidence/credible interval methods for the area under the ROC curve for continuous diagnostic tests with small sample size, Statistical Methods in Medical Research 26(6) (2017), 2603-2621. [16] Y. Fong and Y. Huang, Modified Wilcoxon-Mann-Whitney test and power against strong null, The American Statistician 73(1) (2019), 43-49. [17] P. Grzegorzewski, Statistical inference about the median from vague data, Control and Cybernetics 27 (1998), 447-464. [18] P. Grzegorzewski, k‐sample median test for vague data, International Journal of Intelligent Systems 24(5) (2009), 529-539. [19] M. Happ, A. C. Bathke and E. Brunner, Optimal sample size planning for the Wilcoxon-Mann-Whitney test, Statistics in Medicine 38(3) (2019), 363-375. [20] G. E. Haynam and Z. Govindarajulu, Exact power of Mann-Whitney test for exponential and rectangular alternatives, The Annals of Mathematical Statistics 37(4) (1966), 945-953. [21] M. Hollander, D. A. Wolfe and E. Chicken, Nonparametric Statistical Methods, Vol. 751, John Wiley & Sons, 2013. [22] J. Kacprzyk, E. Szmidt, S. Zadrożny, K. T. Atanassov and M. Krawczak, Advances in fuzzy logic and technology 2017, Proceedings of: EUSFLAT-2017 –The 10th Conference of the European Society for Fuzzy Logic and Technology, September 11-15, 2017, Warsaw, Poland IWIFSGN’2017 – The Sixteenth International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets, September 13-15, 2017, Warsaw, Poland, Vol. 2, Springer, 2017. [23] C. Kahraman, C. E. Bozdag, D. Ruan and A. F. Özok, Fuzzy sets approaches to statistical parametric and nonparametric tests, International Journal of Intelligent Systems 19(11) (2004), 1069-1087. [24] G. K. Kanji, 100 statistical tests, 100 Statistical Tests, 2006, pp. 1-256. [25] K. R. Mollan, I. M. Trumble, S. A. Reifeis, O. Ferrer, C. P. Bay, P. L. Baldoni and M. G. Hudgens, Exact power of the rank-sum test for a continuous variable, 2019, arXiv preprint arXiv:1901.04597. [26] N. A. Nabeeh, F. Smarandache, M. Abdel-Basset, H. A. El-Ghareeb and A. Aboelfetouh, An integrated neutrosophic-topsis approach and its application to personnel selection: a new trend in brain processing and analysis, IEEE Access 7 (2019), 29734-29744. [27] R. G. Newcombe, Confidence intervals for an effect size measure based on the Mann-Whitney statistic. Part 1: general issues and tail‐area‐based methods, Statistics in Medicine 25(4) (2006a), 543-557. [28] R. G. Newcombe, Confidence intervals for an effect size measure based on the Mann-Whitney statistic. Part 2: asymptotic methods and evaluation, Statistics in Medicine 25(4) (2006b), 559-573. [29] X. Peng and J. Dai, Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function, Neural Computing and Applications 29(10) (2018), 939-954. [30] M. P. Perme and D. Manevski, Confidence intervals for the Mann-Whitney test, Statistical Methods in Medical Research 28(12) (2019), 3755-3768. [31] G. Qin and L. Hotilovac, Comparison of non-parametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic test, Statistical Methods in Medical Research 17(2) (2008), 207-221. [32] A. Shahin, Y. Guo, K. Amin and A. A. Sharawi, A novel white blood cells segmentation algorithm based on adaptive neutrosophic similarity score, Health Information Science and Systems 6(1) (2018), 1. [33] D. Shin, Y. Yamamoto, M. P. Brady, S. Lee and J. A. Haynes, Modern data analytics approach to predict creep of high-temperature alloys, Acta Materialia 168 (2019), 321-330. [34] F. Smarandache, Neutrosophy, Neutrosophic Probability, Set, and Logic, ProQuest Information and Learning, Ann Arbor, Michigan, USA, 105, 1998, pp. 118 123. [35] F. Smarandache, Introduction to neutrosophic statistics, Infinite Study (2014). doi:10.13140/2.1.2780.1289. [36] F. Smarandache, Introduction to Neutrosophic Statistics, Sitech and Education Publisher, Craiova, Romania-Educational Publisher, Columbus, Ohio, USA, 123, 2014. [37] F. Smarandache, NIDUS IDEARUM, Scilogs, V: joining the dots, Infinite Study 5 (2019). [38] S. Taheri and G. Hesamian, A generalization of the Wilcoxon signed-rank test and its applications, Statistical Papers 54(2) (2013), 457-470. [39] S. M. Taheri and M. Arefi, Testing fuzzy hypotheses based on fuzzy test statistic, Soft Computing 13(6) (2009), 617-625. [40] S. M. Taheri and G. Hesamian, Non-parametric statistical tests for fuzzy observations: fuzzy test statistic approach, International Journal of Fuzzy Logic and Intelligent Systems 17(3) (2017), 145-153. [41] K. Vermeulen, O. Thas and S. Vansteelandt, Increasing the power of the Mann‐Whitney test in randomized experiments through flexible covariate adjustment, Statistics in Medicine 34(6) (2015), 1012-1030.
|