Keywords and phrases: reaction diffusion equation, quenching solution, conformable fractional derivatives, convergence, numerical quenching time, extinction, numerical quenching time, existence, finite difference method.
Received: April 2, 2023; Accepted: May 25, 2023; Published: September 5, 2023
How to cite this article: D. Yekre Benjamn, Yoro Gozo, Diopina Kambere and Halima Nachid, Perturbed quenching phenomenon for a conformable fractional order reaction-diffusion equation, Universal Journal of Mathematics and Mathematical Sciences 19(1) (2023), 61-85. http://dx.doi.org/10.17654/2277141723017
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] P. H. Chang and H. A. Levine, The quenching of solutions of semilinear hyperbolic equations, SIAM J. Math. Anal. 12(6) (1981), 893-903. [2] D. P. Clemence-Mkhope and B. G. B. Clemence-Mkhope, The limited validity of the conformable Euler finite difference method and an alternate definition of the conformable fractional derivative to justify modification of the method, Math. Comput. Appl. 26(4) (2021), 66. [3] H. A. Levine, The phenomenon of quenching: A survey, Trends Theory Pract. Non-linear Anal. 110 (1985), 275-286. [4] Yufeng Xu, Quenching phenomenon in a fractional diffusion equation and its numerical simulation, Int. J. Comput. Math. (2018), 98 113. [5] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65-70. [6] Xu Qu and Yufeng Xu, Extremely low order time-fractional differential equation and application in combustion process, Commun. Nonlinear Sci. Numer. Simulat. 64 (2018), 135-148. [7] T. K. Boni and Halima Nachid, Blow-up for semidiscretizations of some semilinear parabolic equations with nonlinear boundary conditions, Rev. Ivoir. Sci. Tech. 11 (2008), 61-70. [8] T. K. Boni, Halima Nachid and D. Nabongo, Blow-up for discretization of a localized semilinear heat equation, Analele Stiintifice Ale Univertatii 2 (2010). [9] T. K. Boni, Extinction for discretizations of some semilinear parabolic equations, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 795-800. [10] Halima Nachid, Quenching for Semi Discretizations of a Semilinear Heat Equation with Potentiel and General Non Linearities, Revue D’analyse Numerique Et De Theorie De L’approximation 2 (2011), 164-181. [11] J. Guo, On a quenching problem with Robin boundary condition, Nonl. Anal. TMA. 17 (1991), 803-809. [12] D. Nabongo and T. K. Boni, Quenching for semi discretizations of a semi linear heat equation with Dirichlet and Neumann boundary conditions, Comment. Math. Univ. Carolinae 49 (2008), 466-475. [13] Vahid Mohammadnezhad, Mostafa Eslami and Hadi Rezazadeh, Stability analysis of linear conformable fractional differential equations system with time delays, Bol. Soc. Paran. Mat. 38(6) (2020), 159-171. [14] B. Xin, W. Peng, Y. Kwon and Y. Liu, Modeling, discretization, and hyperchaos detection of conformable derivative approach to a financial system with market confidence and ethics risk, Adv. Differ. Equ. 2019 (2019), 138. [15] B. Selçuk, Quenching behavior of a semilinear reaction-diffusion system with singular boundary condition, Turkish J. Math. 40 (2016), 166-180. [16] B. Selçuk and N. Ozalp, The quenching behavior of a semilinear heat equation with a singular boundary outflux, Quart. Appl. Math. 72 (2014), 747-752.
|