Keywords and phrases: heat transfer, magnetohydrodynamic, viscous fluid, Hartmann number, ciliated tube, Brinkman number, entropy.
Received: March 10, 2023; Accepted: June 14, 2023; Published: September 4, 2023
How to cite this article: Tadesse Lamesse, Heat conduction for an MHD viscous fluid with entropy generation analysis, Far East Journal of Dynamical Systems 36(1) (2023), 105-127. http://dx.doi.org/10.17654/0972111823005
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] T. Y. Wu, On the theoretical modelling of aquatic and aerial animal locomotion, Adv. Appl. Mech. 38 (2001), 291-353. [2] T. Y. Wu, Reflections for resolution to some recent studies on fluid mechanics, Advances in Engineering Mechanics - Reflections and Outlooks, World Scientific, Singapore, 2006. [3] J. Feng and S. K. Cho, Mini and micro propulsion for medical swimmers, Micromachines 5 (2014), 97-113. [4] Y. Wang, Y. Gao, H. M. Wyss, P. D. Anderson and J. M. J. den Toonder, Artificial cilia fabricated using magnetic fiber drawing generate substantial fluid flow, Microfluidics and Nanofluidics 18 (2015), 167-174. [5] M. A. Sleigh, The Biology of Cilia and Flagella, MacMillan, New York, USA, 1962. [6] T. J. Lardner and W. J. Shack, Cilia transport, Bull. Math. Biophys. 34 (1972), 325-335. [7] J. R. Blake, A model for the micro-structure in ciliated organisms, J. Fluid Mech. 55 (1972), 1-23. [8] T. Y. Wu, Fluid mechanics of ciliary propulsion, Proc. Tenth Annual Meeting of the Society of Engineering Science, Yale University, Connecticut, USA, 1973. [9] C. Brennen, An oscillating boundary layer theory for ciliary propulsion, J. Fluid Mech. 65 (1974), 799-824. [10] M. A. Sleigh and E. Aiello, The movement of water by cilia, Acta Protozool. 11 (1972), 265-277. [11] H. Agarwal and A. Uddin, Cilia transport of bio-fluid with variable viscosity, Indian J. Pure Appl. Math. 15 (1984), 1128-1139. [12] J. R. Blake, A spherical envelope approach to ciliary propulsion, J. Fluid Mech. 46 (1971), 199-208. [13] C. E. Miller, An investigation of the movement of Newtonian liquids initiated and sustained by the oscillation of mechanical cilia, Aspen Emphysema Conf., Aspen, Colorado, USA, 1967. [14] C. Barton and S. Raynor, Analytical investigation of cilia induced mucous flow, Bull. Math. Biophys. 29 (1967), 419-428. [15] D. J. Smith, E. A. Gaffney and J. R. Blake, A viscoelastic tracting layer model of muco-ciliary transport, Bull. Math. Biol. 69 (2007), 289-327. [16] A. Dauptain, J. Favier and A. Battaro, Hydrodynamics of ciliary propulsion, J. Fluid Struct. 24 (2008), 1156-1165. [17] S. N. Khaderi and P. R. Onck, Fluid-structure interaction of three-dimensional magnetic artificial cilia, J. Fluid Mech. 708 (2012), 303-328. [18] S. N. Khaderi, J. M. J. den Toonder and P. R. Onck, Fluid flow due to collective non-reciprocal motion of symmetrically-beating artificial cilia, Biomicrofluidics 6 (2012), 014106-014120. [19] S. N. Khaderi, C. B. Craus, J. Hussong, N. Schorr, D. J. Belardi, J. Westerweel, O. Prucker, D. J. Ruhe, J. M. J. den Toondere and P. R. Onck, Magnetically-actuated artificial cilia for microfluidic propulsion, Lab Chip 11 (2011), 2002-2010. [20] G. A. Truskey, F. Yuan and D. F. Katz, Transport Phenomena in Biological Systems, Pearson, New Jersey, 2004. [21] O. Coussy, Mechanics of Porous Continua, Butterworths, USA, 1993. [22] A. R. A. Khaled and K. Vafai, The role of porous media in modelling flow and heat transfer in biological tissues, Int. J. Heat Mass Transf. 46 (2003), 4989-5003. [23] P. G. Staffman, On the boundary condition at the surface of a porous medium, Stud. Appl. Math. 50 (1971), 93-101. [24] B. Jeffrey, H. S. Udaykumar and K. S. Schulze, Flow fields generated by peristaltic reflex in isolated guinea pig ileum: impact of contraction depth and shoulders, Am. J. Physiol. Gastrointest. Liver Physiol. 285 (2003), 907-918. [25] E. F. Elshehawey, N. T. Eldabe, E. M. Elghazy and A. Ebaid, Peristaltic transport in a symmetric channel through a porous medium, Appl. Math. Comput. 182 (2006), 140-150. [26] D. Tripathi and O. A. Beg, A study of unsteady physiological magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping, Proc. Inst. Mech. Eng. Part H: J. Eng. Medi. 226(8) (2012), 631-644. [27] A. Bejan, A study of entropy generation on fundamental convective heat transfer, J. Heat Transf. 101 (1979), 718-725. [28] M. Pakdemirli and B. S. Yilbas, Entropy generation in a pipe due to non-Newtonian fluid flow: constant viscosity case, Sadhana 31 (2006), 21-29. [29] E. Abu Nada, Entropy generation due to heat and fluid flow in backward facing step flow with various expansion ratios, Int. J. Exergy 3 (2006), 419-435. [30] H. F. Oztop, A. Z. Sahin and I. Dagtekin, Entropy generation through hexagonal cross-sectional duct for constant wall temperature in laminar flow, Int. J. Energy Res. 28 (2004), 725-737. [31] I. Dagtekin, H. F. Oztop and A. Z. Sahin, An analysis of entropy generation through circular duct with different shaped longitudinal fins for laminar flow, Int. J. Heat Mass Transf. 48 (2005), 171-181. [32] F. Selimefendigil, H. F. Oztop and O. Mahian, Effects of a partially conductive partition in MHD conjugate convection and entropy generation for a horizontal annulus, J. Therm. Anal. Calorim. 139 (2020), 1537-1551. [33] I. Dagtekin, H. F. Oztop and A. Bahloul, Entropy generation for natural convection in G-shaped enclosures, Int. Commun. Heat Mass Trans. 34 (2007), 502-510. [34] H. F. Oztop and K. Al-Salem, A review on entropy generation in natural and mixed convection heat transfer for energy systems, Ren. Sust. En. Reviews 16 (2012), 911-920. [35] A. Shafee, M. Sheikholeslami, M. Jafaryar and H. Babazadeh, Irreversibility of hybrid nanoparticles within a pipe fitted with turbulator, J. Therm. Anal. Calorim. (2020). doi:10.1007/s10973-019-09248-8. [36] N. S. Akbar, Entropy generation analysis for a CNT suspension nanofluid in plumb ducts with peristalsis, Entropy 17 (2015), 1411-1424. [37] H. Babazadeh, T. Ambreen, S. A. Shehzad and A. Shafee, Ferrofluid non-Darcy heat transfer involving second law analysis: an application of CVFEM, J. Therm. Anal. Calorim. (2020). doi:10.1007/s10973-020-09264-z. [38] N. S. Akbar, Entropy generation and energy conversion rate for the peristaltic flow in a tube with magnetic field, Energy 82 (2015), 23-30. [39] R. Ellahi, M. M. Bhatti, C. Fetecau and K. Vafai, Peristaltic flow of couple stress fluid in a non-uniform rectangular duct having compliant walls, Commun. Theor. Phys. 65 (2016), 66-72. [40] N. S. Akbar, Biofluidics study in digestive system with thermal conductivity of shape nanosize nanoparticles, J. Bionic Eng. 12 (2015), 656-663. [41] N. S. Akbar, A new thermal conductivity model with shaped factor ferromagnetism nanoparticles study for the blood flow in non-tapered stenosed arteries, IEEE Trans. NanoBioscience 14 (2015), 780-789. [42] R. Ellahi, S. U. Rehman, S. Nadeem and Noreen Sher Akbar, Influence of heat and mass transfer on micropolar fluid of blood flow through a tapered stenosed arteries with permeable walls, J. Comput. Theor. Nanosci. 11 (2014), 1156-1163. [43] S. Nadeem and H. Sadaf, Theoretical analysis of Cu-blood nanofluid for metachronal wave of cilia motion in a curved channel, Trans. Nanobiosci. 14 (2015), 447-454. [44] N. S. Akbar and Z. H. Khan, Heat transfer analysis of bi-viscous ciliary motion fluid, Int. J. Biomath. 8 (2015), Article ID 1550026. [45] N. S. Akbar, Biomathematical analysis of carbon nanotubes due to ciliary motion, Int. J. Biomath. 8 (2015), Article ID 1550023. [46] S. Nadeem and H. Sadaf, Ciliary motion phenomenon of viscous nanofluid in a curved channel with wall properties, Eur. Phys. J. Plus 131 (2016), 65-75.
|