Keywords and phrases: geodesically reversible, Blaschke Finsler metrics, Randers metrics.
Received: June 14, 2023; Accepted: July 18, 2023; Published: July 24, 2023
How to cite this article: Chang-Wan Kim, Geodesically reversible Blaschke Finsler metrics on spheres, JP Journal of Geometry and Topology 29(2) (2023), 153-166. http://dx.doi.org/10.17654/0972415X23007
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] A. Abbondandolo, B. Bramham, U. L. Hryniewicz and P. A. S. Salomão, Sharp systolic inequalities for Riemannian and Finsler spheres of revolution, Trans. Amer. Math. Soc. 374 (2021), 1815-1845. [2] J. C. Álvarez-Paiva, Rigidity results for geodesically reversible Finsler metrics, preprint, 2021. available at arXiv:2106.10095. [3] M. Berger and J. L. Kazdan, A Sturm-Liouville inequality with applications to an isoperimetric inequality for volume in terms of injectivity radius, and to Wiedersehen manifolds, General Inequalities 2, Proc. 2nd Int. Conf., Oberwolfach, 1978, ISNM, Vol. 47, 1980, pp. 367-377. [4] A. L. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Vol. 93, 1978. [5] R. L. Bryant, Geodesically reversible Finsler 2-spheres of constant curvature, Nankai Tracts Math. 11 (2006), 95-111. [6] N. Innami, Y. Itokawa, T. Nagano and K. Shiohama, Blaschke Finsler manifolds and actions or projective Randers changes on cut loci, Trans. Amer. Math. Soc. 371 (2019), 7433-7450. [7] C.-W. Kim, Locally symmetric positively curved Finsler spaces, Arch. Math. 88 (2007), 378-384. [8] C.-W. Kim, Blaschke Finsler metrics on spheres, Int. J. Geom. Methods Mod. Phys. 16 (2019), 1950137. [9] C.-W. Kim, Geodesic conjugacy for geodesically reversible Finsler metrics, Int. J. Geom. Methods Mod. Phys. 20 (2023), 2360066. [10] C.-W. Kim and J.-W. Yim, Finsler manifolds with positive constant flag curvature, Geom. Dedicata 98 (2003), 47-56. [11] A. G. Reznikov, The weak Blaschke conjecture for Invent. Math. 117 (1994), 447-454. [12] S. Sabourau, Strong deformation retraction of the space of Zoll Finsler projective planes, J. Symplectic Geom. 17 (2019), 443-476. [13] Y.-B. Shen and Z. Shen, Introduction to Modern Finsler Geometry, World Scientific, 2006. [14] A. Weinstein, On the volume of manifolds all of whose geodesics are closed, J. Differential Geom. 9 (1974), 513-517. [15] C. T. Yang, Odd-dimensional Wiedersehen manifolds are spheres, J. Differential Geom. 15 (1980), 91-96.
|