Keywords and phrases: axisymmetric flow, Powell Eyring fluid, Keller-Box method, thermal radiation, joule heating, chemical reaction.
Received: August 16, 2022; Revised: January 8, 2023; Accepted: February 10, 2023; Published: July 14, 2023
How to cite this article: D. V. N. S. R. Murthy, P. R. Sobhana Babu and Ch. Srinivasulu, Impact of buoyancy on axisymmetric Powell Eyring fluid with joule heating in presence of chemical reaction, JP Journal of Heat and Mass Transfer 34 (2023), 65-91. http://dx.doi.org/10.17654/0973576323033
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] B. C. Sakiadas, Boundary layer behavior on continuous solid surface: 1. Boundary layer equations for 2D and axisymmetric flow, AIChE J. 7 (1961), 26-28. https://doi.org/10.1002/aic.690070108. [2] P. D. Ariel, Axisymmetric flow due to a stretching sheet with partial slip, Int. J. Comp. Math. Appl. 54 (2007), 1169-1183. https://doi.org/10.1016/j.camwa.2006.12.063. [3] R. R. Martins, F. S. Silveira, M. L. Martins-Coasta and S. Frey, Numerical investigation of inertia and shear thinning effects in axisymmetric flows of Carreau fluids by a Galerkin least-squares method, Lat. Am. Appl. Res. 38 (2008), 321-328. [4] M. Sajid, I. Ahmad, T. Hayat and M. Ayub, Series solution for unsteady axisymmetric flow and heat transfer over a radially stretching sheet, Comm. Nonlinear Sci. Numer. Simul. 13 (2008), 2193-2202. https://doi.org/10.1016/j.cnsns.2007.06.001. [5] B. Sahoo, Effects of slip, viscous dissipation and joule heating on MHD flow and heat transfer of a second grade fluid past a radially stretching sheet, Appl. Math. Mech. 31 (2010), 159-173. https://doi.org/10.1007/s10483-010-0204-7. [6] M. Mustafa, J. A. Khan, T. Hayat and A. Alsaedi, Analytical and numerical solutions for axisymmetric flow of nano fluid due to nonlinear stretching sheet, Int. J. Non-Linear Mech. 71 (2015), 22-29. https://doi.org/10.1016/j.ijnonlinmec.2015.01.005. [7] M. Nawaz, A. Alsaedi, T. Hayat and M. S. Alhothauli, Dufour and Soret effects in an axisymmetric stagnation point flow of second grade fluid with Newtonian heating, Journal of Mechanics 29(1) (2013), 27-34. https://doi.org/10.1016/jmech.2012.142. [8] M. Awais, T. Hayat, M. Nawaz and A. Alsaedi, Newtonian heating, thermal- diffusion and diffusion-thermo effects in an axisymmetric flow of a Jerry fluid over a stretching surface, Brazilian Journal of Chemical Engg. 32(2) (2015), 555-561. https://doi.org/10.1590/0104-6632.20150322s00001918. [9] T. Hayat, S. Makhdoom, M. Awais, S. Saleem and M. M. Rashidi, Axisymmetric Powell-Eyring fluid flow with convective boundary condition: optimal analysis, Appl. Math. Mech. Engl. Ed. 37(7) (2016), 919-928. https://doi.org/10.1007/s10483-016-2093-9. [10] K. Gangadhar, P. R. Sobhana Babu and O. D. Makinde, Spectral relaxation method for Powell-Eyring fluid flow past a radially stretched heated disk surface in a porous medium, Defect and Diffusion Forum 387 (2018), 575-586. https://doi.org/10.4028/www.scientific.net/DDF.387.575. [11] K. Gangadhar, D. V. Kumar, S. M. Ibrahim and O. D. Makinde, On spectral relaxation approach to radiating Powell-Eyring fluid flow over a stretching disk with Newtonian heating, Defect and Diffusion Forum 387 (2018), 461-473. https://doi.org/10.4028/www.scientific.net/DDF.387.461. [12] B. Nayak, S. R. Mishra and G. Gopi Krishna, Chemical reaction effect on an axisymmetric flow over radially stretched sheet, Propulsion and Power Research 8(1) (2019), 79-84. https://doi.org/10.1016/j.jppr.2019.01.002. [13] A. Ogulu and O. D. Makinde, Unsteady hydromagnetic free convection flow of a dissipative and radiating fluid past a vertical plate with constant heat flux, Chemical Engineering Communications 196(4) (2009), 454-462. [14] O. D. Makinde, MHD mixed-convection interaction with thermal radiation and nth order chemical reaction past a vertical porous plate embedded in a porous medium, Chemical Engineering Communications 198(4) (2011), 590-608. [15] O. D. Makinde and R. J. Moitsheki, On non-perturbative techniques for thermal radiation effect on natural convection past a vertical plate embedded in a saturated porous medium, Mathematical Problems in Engineering 2008(1) (2008), 689074 (11 pages). [16] R. P. Sharma, K. Avinash, N. Sandeep and O. D. Makinde, Thermal radiation effect on non-Newtonian fluid flow over a stretched sheet of non-uniform thickness, Defect and Diffusion Forum 377 (2017), 242-259. [17] M. A. El-Aziz, Radiation effect on the flow and heat transfer over an unsteady stretching sheet, Int. Commun. Heat Mass Transf. 36 (2009), 521-524. [18] R. S. Telles and O. V. Trevisan, Dispersion in heat and mass transfer natural convection along vertical boundaries in porous media, Int. J. Heat Mass Transf. 36 (1993), 1357-1365. [19] P. K. Kameswaran, P. Sibanda and S. S. Motsa, A spectral relaxation method for thermal dispersion and radiation effects in a nanofluid flow, Boundary Value Problems 242 (2013). [20] O. D. Makinde and I. L. Animasaun, Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution, International Journal of Thermal Sciences 109 (2016), 159-171. [21] O. D. Makinde, W. A. Khan and Z. H. Khan, Stagnation point flow of MHD chemically reacting nanofluid over a stretching convective surface with slip and radiative heat, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 231(4) (2017), 695-703. [22] H. Upreti and M. Kumar, Influence of non-linear radiation, Joule heating and viscous dissipation on the boundary layer flow of MHD nanofluid flow over a thin moving needle, Multidiscipline Modeling in Materials and Structures 16(1) (2020), 208-224. https://doi.org/10.1108/MMMS-05-2019-0097. [23] H. Upreti, S. K. Rawat and M. Kumar, Radiation and non-uniform heat sink/ source effects on 2D MHD flow of CNTs-H2O nanofluid over a flat porous plate, Multidiscipline Modeling in Materials and Structures 16(4) (2020), 791-809. https://doi.org/10.1108/MMMS-08-2019-0153. [24] R. N. Jat and G. Chand, MHD flow and heat transfer over an exponentially stretching sheet with viscous dissipation and radiation effects, Appl. Math. Sci. 7 (2013), 167-180. [25] R. S. Yadav and P. R. Sharma, Effects of radiation and viscous dissipation on MHD boundary layer flow due to an exponentially moving stretching sheet in porous medium, Asian J. Multidiscip. Stud. 2(8) (2014), 119-124. [26] J. A. Rao, G. Vasumathi and J. Mounica, Joule heating and thermal radiation effects on MHD boundary layer flow of a nanofluid over an exponentially stretching sheet in a porous medium, World J. Mech. 5 (2015), 151-164. [27] A. Adeniyan and J. A. Adigun, Similarity solution of hydromagnetic flow and heat transfer past an exponentially stretching permeable vertical sheet with viscous dissipation, Joulean and viscous heating effects, Ann. Fac. Eng. Hunedoara Int. J. Eng. 14 (2016), 113-120. [28] D. Srinivasacharya and P. Jagadeeshwar, MHD flow with Hall current and Joule heating effects over an exponentially stretching sheet, Nonlinear Eng. Model. Appl. 6(2) (2017), 101-114. [29] M. Khan, M. Waqas, T. Hayat, M. I. Khan and A. Aslaedi, Numerical simulation of nonlinear thermal radiation and homogeneous-heterogeneous reactions in convective flow by a variable thicked surface, J. Mol. Liquids 246 (2017), 259-267. [30] T. Hayat, M. Khan, S. Qayyum and A. Aslaedi, Modern developments about statistical declaration and probable error for skin friction and Nusselt number with copper and silver nanoparticles, Chin. J. Phys. 55 (2017), 2501-2513. [31] T. Hayat, S. Qayyum, M. I. Khan and A. Aslaedi, Entropy generation in magnetohydrodynamic radiative flow due to rotating disk in presence of viscous dissipation and Joule heating, Phys. Fluids 30 (2018), 017101 (1-12). [32] T. Hayat, M. I. Khan, S. Qayyum and A. Aslaedi, Entropy generation in flow with silver copper particles, Colloids Surf. A 529 (2018), 335-346. [33] T. Hayat, M. I. Khan, S. Qayyum, A. Aslaedi and M. I. Khan, New thermodynamics of entropy generation minimization with nonlinear thermal radiation and nanomaterials, Phys. Lett. A 382 (2018), 749-760. [34] H. Upreti, N. Joshi, K. Pandey and S. K. Rawat, Homogeneous-heterogeneous reactions within magnetic Sisko nanofluid flow through stretching sheet due to convective conditions using Buongiorno’s model, Journal of Nanofluids 11 (2022), 646-656. [35] P. L. Chambree and J. D. Young, On the diffusion of a chemically reactive species in a laminar boundary layer flow, Phys. Fluids 1(1) (1958), 48-54. https://doi.org/10.1063/1.1724336. [36] R. Kandaswamy, K. Periasamy and K. K. Prabhu, Effects of chemical reaction, heat and mass transfer along a wedge with heat source and concentration in the presence of suction or injection, Int. J. Heat Mass Transfer 48(7) (2005), 1388-1394. https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.008. [37] R. Muthukumaraswamy, Effects of suction on heat and mass transfer along a moving vertical surface in the presence of chemical reaction, Forschung im Ingenieurwesen 67(3) (2012), 129-132. https://doi.org/10.1007/s10010-002-0083-2. [38] A. M. Salem and M. Abd El-Aziz, Effect of Hall current and chemical reaction on hydromagnetic flow of a stretching vertical surface with internal heat generation/absorption, Applied Mathematical Modeling 32(7) (2008), 1236-1254. https://doi.org/10.1016/j.apm.2007.03.008. [39] K. G. Kumar, B. J. Gireesha, B. C. Prasanna Kumara and O. D. Makinde, Impact of chemical reaction on Marangoni boundary layer flow of a Casson nano fluid in presence of heat source/sink, Diffusion Foundation 11 (2017), 22-32. https://doi.org/10.4028/www.scientific.net/DF.11.22. [40] P. O. Olanrewaju and O. D. Makinde, Effects of thermal diffusion and diffusion thermo on chemically reacting MHD boundary layer flow of heat and mass transfer past a moving vertical surface with suction/injection, Arabian Journal of Science and Engineering 36 (2011), 1607-1619. https://doi.org/10.1007/s13369-011-0143-8. [41] M. B. Ashraf, T. Hayat and A. Alsaedi, Mixed convection flow of Casson fluid over a stretching sheet with convective boundary conditions and Hall effect, Boundary Value Problems (2017), Article No. 137. doi:10.1186/s13661-017-0869-7. [42] A. Mishra and H. Upreti, A comparative study of Ag-MgO/water and Fe3O4-CoFe2O4/EG-water hybrid nanofluid flow over a curved surface with chemical reaction using Buongiorno model, Partial Differential Equations in Applied Mathematics 5 (2022). https://doi.org/10.1016/j.padiff.2022.100322. [43] K. Pandey and H. Upreti, Mixed convective flow of Ag-H2O magnetic nanofluid over a curved surface with volumetric heat generation and temperature-dependent viscosity, Heat Transfer (2021). https://doi.org/10.1002/htj.22227. [44] C. Y. Wang, Natural convection on a vertically radially stretching sheet, Journal of Mathematical Analysis 332 (2007), 877-883. https://doi.org/10.1016/j.jmaa.2006.11.006. [45] S. Nadeem, N. S. Akbar and M. Ali, Endoscopic effects on the peristaltic flow of an Eyring-Powell fluid, Meccanica 47(3) (2012), 687-697.
|