Keywords and phrases: with-in-host model for dengue fever, variation of parameter, stability analysis, numerical methods.
Received: March 22, 2023; Accepted: June 9, 2023; Published: July 4, 2023
How to cite this article: D. Maheskumar, T. Jayakumar, S. Sujitha and E. Vargees Kaviyan, Analytical and numerical approaches to solve a system of nonlinear ordinary differential equations for the spread of dengue fever of with-in-host model, Advances in Differential Equations and Control Processes 30(3) (2023), 277-295. http://dx.doi.org/10.17654/0974324323015
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow, C. L. Moyes, J. M. Drake, J. S. Brownstein, A. G. Hoen, O. Sankoh, M. F. Myers, D. B. George, T. Jaenisch, G. R. Wint, C. P. Simmons, T. W. Scott, J. J. Farrar and S. I. Hay, The global distribution and burden of dengue, Nature 496(7446) (2013), 504-507. [2] G. Chowell, F. Diaz-Duenas, J. C. Miller, A. Alcazar-Velazco, J. M. Hyman, M. Fenimore and C. Castillo, Estimation of the reproduction number of dengue fever from spatial epidemic data, Math. Biosci. 208(2) (2007), 571-589. [3] S. Noisakran, K. Chokephaibulkit, P. Songprakhon, N. Onlamoon, H. M. Hsiao, F. Villinger, A. Ansari and G. C. Perng, A reevaluation of the mechanisms leading to dengue hemorrhagic fever, Ann. New York Acad. Sci. 1171(1) (2009), E24-E35. [4] M. G. Guzman, S. B. Halstead, H. Artsob, P. Buchy, J. Farrar, D. J. Gubler, E. Hunsperger, A. Kroeger, H. S. Margolis, E. Martínez, M. B. Nathan, J. L. Pelegrino, C. Simmons, S. Yoksan and R. W. Peeling, Dengue: a continuing global threat, Nature Reviews Microbiology 8 (Suppl 12) (2010), S7-S16. [5] H. E. Clapham, V. Tricou, N. VanVinh Chau, C. P. Simmons and N. M. Ferguson, Within-host viral dynamics of dengue serotype 1 infection, Journal of Royal Society Interface 11 (2014), 20140094. [6] W. M. Wahala and A. M. Silva, The human antibody response to dengue virus infection, Viruses 3(12) (2011), 2374-2395. [7] R. Shukla, V. Ramasamy, R. K. Shanmugam, R. Ahuja and N. Khanna, Antibody- dependent enhancement: a challenge for developing a safe dengue vaccine, Frontiers in Cellular and Infection Microbiology 10 (2020), 572681. [8] R. Nikin-Beers and S. M. Ciupe, The role of antibody in enhancing dengue virus infection, Math. Biosci. 263 (2015), 83-92. [9] M. Z. Khan Assir, U. Kamran, H. I. Ahmad, S. Bashir, H. Mansoor, S. B. Anees and J. Akram, Effectiveness of platelet transfusion in dengue fever: a randomized controlled trial, Transfusion Medicine Hemotherapy 40(5) (2013), 362-368. [10] N. Ahmad, H. Fazal, M. Ayaz, B. H. Abbasi, I. Mohammad and L. Fazal, Dengue fever treatment with Carica papaya leaves extracts, Asian Pacific Journal of Tropical Biomedicine 1(4) (2011), 330-333. [11] H. Ansari and M. Hesaraaki, A with-in host dengue infection model with immune response and Beddington-DeAngelis incidence rate, Appl. Math. 3 (2012), 177-184. [12] R. Ben-Shachar and K. Koelle, Minimal within-host dengue models highlight the specific roles of the immune response in primary and secondary dengue infections, J. R. Soc. Interface 12 (2015), 20140886. [13] A. Mishra, A within-host model of dengue viral infection dynamics, Applied Analysis in Biological and Physical Sciences, Springer Proceedings in Mathematics and Statistics, 2016. [14] N. Nuraini, H. Tasman, E. Soewono and K. A. Sidarto, A with-in host dengue infection model with immune response, Math. Comput. Modelling 49 (2009), 1148-1155. [15] T. P. Gujarati and G. J. Ambika, Virus antibody dynamics in primary and secondary dengue infections, J. Math. Biol. 69 (2014), 1773-1800. [16] Jeremy J. Thibodeaux, Daniel Nunez and Andres Rivera, A generalized within-host model of dengue infection with a non-constant monocyte production rate, Journal of Biological Dynamics 14(1) (2020), 143-161. [17] B. G. Klekamp, Assessing the relationship of monocytes with primary and secondary dengue infection among hospitalized dengue patients in Malaysia, A Cross-sectional Study, Graduate Theses and Dissertations, 2011. [18] S. Kalayanarooj, D. W. Vaughn, S. Nimmannitya, S. Green, S. Suntayakorn, N. Kunentrasai, W. Viramitrachai, E. Ratanachu-eke, S. Kiatpolpoj, B. L. Innis, A. L. Rothman, A. Nisalak and F. A. Ennis, Early clinical and laboratory indicators of acute dengue illness, The Journal of Infectious Diseases 176 (1997), 313-321. [19] J. J. Tsai, J. S. Chang, K. Chang, P. C. Chen, L. T. Liu, T. C. Ho, S. S. Tan, Y. W. Chien, Y. C. Lo and G. C. Perng, Transient monocytosis subjugates low platelet count in adult dengue patients, Biomedicine Hub 2 (2017), 457785. [20] Urszula Ostaszewska, Ewa Schmeidel and Malgorzata Zdanowicz, Existence of positive bounded solutions of system of three dynamic equations with neutral term on time scales, Tatra Mountains Mathematical Publications 71(1) (2018), 123-137. [21] Naveen Sharma, Ram Singh, Carlo Cattani and Rachana Pathak, Modeling and complexity in dynamics of T-cells and cytokines in dengue fever based on antiviral treatment, Chaos Solitons Fractals 153(2) (2021), 111448. [22] S. M. K. Deva Siva, D. Bhanu Prakash, D. K. K. Vamsi and B. S. Carani, A study of within-host dynamics of dengue infection incorporating both humoral and cellular response with a time delay for production of antibodies, Comput. Math. Biophys. 9 (2021), 66-80. [23] S. D. Perera and S. S. N. Perera, Simulation model for dynamics of dengue with innate and humoral immune responses, Computational and Mathematical Methods in Medicine 2018 (2018), 1-18.
|