Keywords and phrases: existence, normal S-iterative method, Volterra-Fredholm integrodifferential equation, continuous dependence, closeness, parameters.
Received: April 8, 2023; Revised: May 4, 2023; Accepted: June 3, 2023; Published: June 28, 2023
How to cite this article: Haribhau L. Tidke and Gajanan S. Patil, Existence of solutions for nonlinear Volterra Fredholm integrodifferential equation of higher order via S-iteration method, Advances in Differential Equations and Control Processes 30(3) (2023), 237-276. http://dx.doi.org/10.17654/0974324323014
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References [1] R. Agarwal, D. O’Regan and D. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8 (2007), 61-79. [2] Y. Atalan and V. Karakaya, Iterative solution of functional Volterra-Fredholm integral equation with deviating argument, J. Nonlinear Convex Anal. 18(4) (2017), 675-684. [3] Y. Atalan and V. Karakaya, Stability of nonlinear Volterra-Fredholm integro differential equation: a fixed point approach, Creative Mathematics and Informatics 26(3) (2017), 247-254. [4] Y. Atalan and V. Karakaya, Investigation of some fixed point theorems in hyperbolic spaces for a three step iteration process, Korean Journal of Mathematics 27(4) (2019), 929-947. [5] Y. Atalan and V. Karakaya, An example of data dependence result for the class of almost contraction mappings, Sahand Communications in Mathematical Analysis (SCMA) 17(1) (2020), 139-155. [6] Yunus Atalan, Faik Gürsoy and Abdul Rahim Khan, Convergence of S-iterative method to a solution of Fredholm integral equation and data dependency, Facta Univ. Ser. Math. Inform. 36(4) (2021), 685-694. [7] V. Berinde and M. Berinde, The fastest Krasnoselskij iteration for approximating fixed points of strictly pseudo-contractive mappings, Carpathian J. Math. 21(1-2) (2005), 13-20. [8] V. Berinde, Existence and approximation of solutions of some first order iterative differential equations, Miskolc Math. Notes 11(1) (2010), 13-26. [9] C. E. Chidume, Iterative approximation of fixed points of Lipschitz pseudo contractive maps, Proc. Amer. Math. Soc. 129(8) 2001, 2245-2251. [10] R. Chugh, V. Kumar and S. Kumar, Strong convergence of a new three step iterative scheme in Banach spaces, American Journal of Computational Mathematics 2 (2012), 345-357. [11] M. B. Dhakne and H. L. Tidke, Existence and uniqueness of solutions of nonlinear mixed integrodifferential equations with nonlocal condition in Banach spaces, Electron. J. Differential Equations 2011(31) (2011), 110. [12] M. Dobritoiu, An integral equation with modified argument, Stud. Univ. Babes-Bolyai Math. XLIX(3) (2004), 27-33. [13] M. Dobritoiu, System of integral equations with modified argument, Carpathian J. Math. 24(2) (2008), 26-36. [14] M. Dobritoiu, A nonlinear Fredholm integral equation, TJMM 1(1-2) (2009), 25-32. [15] M. Dobritoiu, A class of nonlinear integral equations, TJMM 4(2) (2012), 117-123. [16] M. Dobritoiu, The approximate solution of a Fredholm integral equation, International Journal of Mathematical Models and Methods in Applied Sciences 8 (2014), 173-180. [17] M. Dobritoiu, The existence and uniqueness of the solution of a nonlinear Fredholm Volterra integral equation with modified argument via Geraghty contractions, Mathematics 9 (2020), 29. https://dx.doi.org/10.3390/math9010029. [18] F. Gürsoy and V. Karakaya, Some convergence and stability results for two new Kirk type hybrid fixed point iterative algorithms, Journal of Function Spaces 2014 (2014), 1-8. doi: 10.1155/2014/684191. [19] F. Gürsoy, V. Karakaya and B. E. Rhoades, Some convergence and stability results for the Kirk Multistep and Kirk-SP fixed point iterative algorithms, Abstr. Appl. Anal. 2014 (2014), 1-12. doi: 10.1155/2014/806537. [20] E. Hacioglu, F. Grsoy, S. Maldar, Y. Atalan and G. V. Milovanovic, Iterative approximation of fixed points and applications to two-point second-order boundary value problems and to machine learning, Appl. Numer. Math. 167 (2021), 143-172. [21] N. Hussain, A. Rafiq, B. Damjanović and R. Lazović, On rate of convergence of various iterative schemes, Fixed Point Theory Appl. Volume 2011, Article ID 45, 6 pages. [22] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150. [23] S. M. Kang, A. Rafiq and Y. C. Kwun, Strong convergence for hybrid S-iteration scheme, J. Appl. Math. Volume 2013, Article ID 705814, 4 pages. http://dx.doi.org/10.1155/2013/705814. [24] S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl. Volume 2013, Article ID, 10 pages. [25] S. Maldar, Y. Atalan and K. Dogan, Comparison rate of convergence and data dependence for a new iteration method, Tbilisi Mathematical Journal 13(4) (2020), 65-79. [26] S. Maldar, F. Grsoy, Y. Atalan and M. Abbas, On a three-step iteration process for multivalued Reich-Suzuki type a-nonexpansive and contractive mappings, J. Appl. Math. Comput. 68 (2022), 863-883. [27] S. Maldar, Iterative algorithms of generalized nonexpansive mappings and monotone operators with application to convex minimization problem, J. Appl. Math. Comput. 68 (2022), 1841-1868. [28] B. G. Pachpatte, On Fredholm type integrodifferential equation, Tamkang J. Math. 39(1) (2008), 85-94. [29] B. G. Pachpatte, On higher order Volterra-Fredholm integrodifferential equation, Fasc. Math. 37 (2007), 35-48. [30] D. R. Sahu, Applications of the S-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory 12(1) (2011), 187-204. [31] D. R. Sahu and A. Petrusel, Strong convergence of iterative methods by strictly pseudo contractive mappings in Banach spaces, Nonlinear Anal. 74(17) (2011), 6012-6023. [32] S. Soltuz and T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive-like operators, Fixed Point Theory Appl. 2008 (2008), 242916. https://doi.org/10.1155/2008/242916. [33] H. L. Tidke, Some results on certain Volterra integral and integro-differential functional equations with finite delay, Int. J. Math. Sci. 17(3-4) (2018), 241-266. [34] H. L. Tidke and M. B. Dhakne, Nonlinear mixed Volterra-Fredholm integrodifferential equation with nonlocal condition, Appl. Math. 57(3) (2012), 297-307. [35] H. L. Tidke and M. B. Dhakne, Nonlocal Cauchy problem for nonlinear mixed integrodifferential equations, Tamkang J. Math. 41(4) (2010), 361-373.
|