Keywords and phrases: SEIR model, mathematical modeling, basic reproduction number, stability, numerical simulation, sensitivity analysis.
Received: February 7, 2023; Accepted: March 27, 2023; Published: June 17, 2023
How to cite this article: OUEDRAOGO Boukary, ZOROM Malicki and GOUBA Elisée, Mathematical analysis of hepatitis B transmission model, Advances in Differential Equations and Control Processes 30(3) (2023), 213-236. http://dx.doi.org/10.17654/0974324323013
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. A. Fall, Études de quelques modèles épidémiologiques : application à la transmission du virus de l’hépatite B en Afrique subsaharienne (cas du Sénégal), Systèmes dynamiques [math.DS], Université Paul Verlaine-Metz; Université Gaston Berger, Saint Louis, Sénégal, Français, 2010, pp. 19-20. [2] T. Khan, G. Zaman and M. I. Chahan, The transmission dynamic and optimal control of acute and chronic hepatitis B, Journal of Biological Dynamics 11(1) (2017), 172-189. DOI: 10.1080/17513758.2016.1256441. [3] A. V. Kamyad, R. Akbari, A. A. Heydari and A. Heydari, Modélisation mathématique de la dynamique de transmission et contrôle optimal de la vaccination et du traitement du virus de l’hépatite B", Méthodes Computationnelles et Mathématiques en Médecine 2014 (2014), 15 pp. [4] G. Sallet, Nombre de reproduction de base INRIA et TRD, EPICASA09, 2010. [5] L. Z. W. Zhang and S. Ruan, Modeling the transmission dynamics and control of hepatitis B virus in China, J. Theoret. Biol. 262(2) (2010), 330-338. [6] S. Bentout, Mathématiques appliquées à quelques modèles épidémiologiques, Thèse de Doctorat, Spécialité : Mathématiques, Université Abou Bekr Belkaid, Tlemcen, 2016. [7] D. Bichara, Étude de Modèles Épidémiologiques: stabilité, observation et estimation de parameters, Systèmes dynamiques [math.DS], Université de Lorraine, 2013. [8] O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (1990), 365-382. [9] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), 29-48. [10] P. Auger, C. Lett and J. C. Poggiale, Modélisation Mathématique en Écologie Cours et Exercices Corrigés, Dunod, Paris, 2000. [11] N. R. Chitnis, Using mathematical models in controlling the spread of malaria, A Dissertation submitted to the Faculty of the Graduate Interdisciplinary Program in Applied Mathematics, Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in the Graduate college, The University of Arizona, 2005. [12] D. R. Powell, J. Fair, R. J. Leclaire, L. M. Moore and D. Thompson, Sensitivity analysis of an infectious disease model, International System Dynamics Conference, Boston, MA, 2005. [13] I. Zada, M. N. Jan, N. Ali, D. Alrowail, K. S. Nisar and G. Zaman, Mathematical analysis of hepatitis B epidemic model with optimal control, Advances in Continuous and Discrete Models 2012 (2021), Article number 451. [14] W. O. Kermack and A. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc., A 115 (1927), 700-721. [15] R. M. Anderson and R. M. May, Infectious Disease of Humans Dynamics and Control, Oxford University Press, Oxford, 1991. [16] J. R. Nokes, D. J. Medley, and G. F. Anderson, The transmission dynamics of hepatitis B in the UK: a mathematical model for evaluating costs and effectiveness of immunization programmes, Epidemiol. Infect. 116 (1996), 71-89. [17] G. F. Medley, N. A. Lindop, W. J. Edmunds and D. J. Nokes, Hepatitis B virus endemicity: heterogeneity, catastrophic dynamics and control, Nature Medicine 7 (2001), 619-624.
|