Keywords and phrases: inverse problem, non-standard problem, adjoint problem, spectral method.
Received: April 27, 2023; Accepted: May 29, 2023; Published: June 15, 2023
How to cite this article: ABANI MAIDAOUA Ali, DJIBO Moustapha and SALEY Bisso, Numerical approximation of the final state of an incomplete data heat problem, Advances in Differential Equations and Control Processes 30(3) (2023), 199-212. http://dx.doi.org/10.17654/0974324323012
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References [1] A. F. Bennett, Inverse Modeling of the Ocean and Atmosphere, Cambridge University Press, Cambridge, 2002. [2] Abani Maidaoua Ali, Dia Bassirou, Diop Oulimata, Sembene Ama Diop Niang and Benjamin Mampassi, Solving an incomplete data inverse problem by a pseudo-spectral approximation method with a non standard approach, International Journal of Numerical Methods and Applications 18(2) (2019), 9-21. [3] K. J. Beven and J. Freer, Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, Journal of Hydrology 249 (2001), 11-29. [4] D. H. Burn and D. B. Boorman, Estimation of hydrological parameters at ungauged catchments, Journal of Hydrology 143 (1992), 429-454. [5] D. G. Cacuci, Sensitivity theory for nonlinear systems: I. Nonlinear functional analysis approach, J. Math. Phys. 22 (1981), 2794-2802. [6] D. G. Cacuci, Sensitivity theory for nonlinear systems: II. Extensions to additional classes of responses, J. Math. Phys. 22 (1981), 2803-2812. [7] D. G. Cacuci, Sensitivity analysis, optimization, and global critical points, United States, 1989, pp. 602-603. [8] R. Daley, Atmospheric Data Analysis, Cambridge University Press, 1991. [9] Jacques Hadamard, On partial differential problems and their physical significance, Princeton University Bulletin, 1902, pp. 49-52. [10] E. Kalnay, S. Ki Park, Z.-X. Pu and J. Gao, Application of the quasi-inverse method to data assimilation, Month. Weather Rev. 128 (2000), 864-875. [11] L. S. Gandin, Objective Analysis of Meteorological Fields, Gidrometeorologicheskoe Izdatelstvo, Leningrad, 1963, Translation by Israel Program for Scientific Translations, Jerusalem, 1965, 242 pp. [12] Jean-Pierre Puel, A non standard approach to a data assimilation problem and Tychonov regularization revisited, SIAM J. Control Optim. 48(2) (2009), 1089-1111. [13] A. C. Lorenc, A global three-dimensional multivariate statistical interpolation scheme, Quart. J. Roy. Meteor. Soc. 109 (1981), 701-721. [14] D. Luenberger, Observers for multivariable systems, IEEE Trans. Automat. Control 11 (1966), 190-197. [15] O. Talagrand, Assimilation of observations, an introduction, J. Met. Soc. Japan 75(1B) (1997), 191-209.
|