Keywords and phrases: traversing vector flow, quasitopy, Grassmanians.
Received: February 19, 2023; Accepted: May 2, 2023; Published: June 15, 2023
How to cite this article: Gabriel Katz, Spaces of polynomials with constrained divisors as Grassmanians for traversing flows, JP Journal of Geometry and Topology 29(1) (2023), 47-120. http://dx.doi.org/10.17654/0972415X23005
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References [1] H. Alpert and G. Katz, Using simplicial volume to count multi-tangent trajectories of traversing vector fields, Geom. Dedicata 180 (2016), 323-338. [2] V. I. Arnold, Spaces of functions with moderate singularities, Funktsional. Anal. i Prilozhen 23 (1989), 1-10; translation in Funct. Anal. Appl. 23 (1990), 169-177 (in Russian). [3] V. I. Arnold, Springer numbers and morsification spaces, J. Algebraic Geom. 1(2) (1992), 197-214. [4] J. M. Boardman, Singularities of differentiable maps, Publ. Math. I.H.E.S. 33 (1967), 21-57. [5] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics 14, Springer-Verlag, New York, Heidelberg Berlin, 1973. [6] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002. [7] S. T. Hu, Homotopy Theory, Academic Press, New York, London, 1959. [8] G. Katz, Stratified convexity and concavity of gradient flows on manifolds with boundary, Appl. Math. 5 (2014), 2823-2848. (SciRes. http://www.scirp.org/journal/am) (also arXiv:1406.6907v1 [mathGT] (26 June, 2014)). [9] G. Katz, Traversally generic and versal flows: semi-algebraic models of tangency to the boundary, Asian J. Math. 21(1) (2017), 127-168. (arXiv:1407.1345v1 [mathGT] 4 July, 2014)). [10] G. Katz, The stratified spaces of real polynomials and trajectory spaces of traversing flows, JP Journal of Geometry and Topology 19(2) (2016), 95-160. [11] G. Katz, Flows in flatland: a romance of few dimensions, Arnold Math. J. 2016. doi 10.1007/s40598-016-0059-1. [12] G. Katz, Causal holography in application to the inverse scattering problem, Inverse Problems and Imaging J. 13(3) (2019), 597-633. (arXiv: 1703.08874v1 [Math.GT], 27 Mar 2017). [13] G. Katz, Morse Theory of Gradient Flows, Concavity and Complexity on Manifolds with Boundary, World Scientific, New Jersey - London - Singapore - Beijing - Shanghai - Hong Kong - Taipei - Chennai - Tokyo, 2019. [14] G. Katz, Holography of geodesic flows, harmonizing metrics, and billiards’ dynamics, Inverse Problems and Imaging, 2020. doi:10.3934/ipi.2023009, arXiv: 2003.10501 v2 [math.DS]. [15] G. Katz, Spaces of polynomials with constrained divisors as Grassmanians for immersions and embeddings, 2022. arXiv:2201.02744v1 [math GT]. [16] G. Katz, Convexity of Morse stratifications and gradient spines of 3-manifolds, JP Journal of Geometry and Topology 9(1) (2009), 1-119. [17] G. Katz, Complexity of shadows and traversing flows in terms of the simplicial volume, Journal of Topology and Analysis 8(3) (2016), 501-543. [18] G. Katz, B. Shapiro and V. Welker, Real polynomials with constrained real divisors. I, Fundamental Groups, 2020. arXiv:1908.07941 v3 [math.AT]. [19] G. Katz, B. Shapiro and V. Welker, Spaces of polynomials and bilinear forms with constrained real divisors, II. (Co)homology and Stabilization, 2021. arXiv:2112.15205v1 [math. AT]. [20] M. Kervaire, Smooth homology spheres and their fundamental groups, Trans. Amer. Math. Soc. 144 (1969), 67-72. doi:10.2307/1995269. [21] M. Kervaire and J. Milnor, Groups of homotopy spheres: I, Annals of Mathematics 77(3) (1963), 504-537. [22] R. Lashof and S. Smale, Self-intersections of immersed manifolds, Journal of Mathematics and Mechanics 8(1) (1959), 143-157. [23] J. Milnor, Lectures on the h-cobordism Theorem, Princeton, New Jersey, Princeton University Press, 1965. [24] B. Morin, Formes canoniques des singularities d’une application differentiable, Comptes Rendus Acad. Sci., Paris 260 (1965), 5662-5665, 6503-6506. [25] M. Morse, Singular points of vector fields under general boundary conditions, Amer. J. Math. 51 (1929), 165-178. [26] C. Pappas, Extensions of codimension one immersions, Trans. Amer. Math. Soc. 348(8) (1996), 3065-3083. [27] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, 2002. arXiv:math.DG/0211159. [28] G. Perelman, Ricci flow with surgery on three-manifolds, 2003. arXiv:math.DG/0303109. [29] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, 2003. arXiv:math.DG/0307245. [30] S. Smale, The classification of immersions of spheres in Euclidean spaces, Ann. Math. 69 (1959), 27-344. [31] R. Thom, La classification des immersions (d’après Smale), Séminaire Bourbaki, Exposé 157 (1957), 11. [32] R. Thom, Les singularites des applications differentiable, Comm. Math. Helv. 28 (1954), 17-86. [33] V. A. Vassiliev, Complements of Discriminants of smooth maps: topology and applications, Translations of Mathematical Monographs, Vol. 98, American Mathematical Society, 1994. [34] C. T. C. Wall, Non-additivity of the signature, Invent. Math. 7 (1969), 269 274. [35] G. Wang and Z. Xu, The triviality of the 61-stem in the stable homotopy groups of spheres, Annal. Math. 186(2) (2017), 501-580. arXiv:1601.02184. [36] G. W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, New York, Heidelberg-Berlin, 1978.
|