Keywords and phrases: Kavya-Manoharan Burr X distribution, exponentiated family, moments, maximum likelihood, skewness, kurtosis.
Received: March 12, 2023; Accepted: April 24, 2023; Published: June 8, 2023
How to cite this article: Ibrahim Elbatal, Safar M. Alghamdi, Anis BEN Ghorbal, A. W. Shawki, Mohammed Elgarhy and Ahmed R. El-Saeed, Exponentiated Kavya-Manoharan Burr X distribution: estimation under censored type II with applications in medical data, JP Journal of Biostatistics 23(3) (2023), 227-247. http://dx.doi.org/10.17654/0973514323013
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] W. Barreto-Souza, A. J. Lemonte and G. M. Cordeiro, General results for the Marshall and Olkin’s family of distributions, Anais da Academia Brasileira de Ciências 85 (2013), 3-21. [2] R. A. Bantan, C. Chesneau, F. Jamal and M. Elgarhy, On the analysis of new COVID-19 cases in Pakistan using an exponentiated version of the M family of distributions, Mathematics 8 (2020), 953. doi:10.3390/math8060953 [3] M. A. Ahmed, M. R. Mahmoud, E. A. ElSherbini, The new Kumaraswamy Kumaraswamy family of generalized distributions with application, Pak. J. Stat. Oper. Res. 11 (2015), 159-180. [4] Z. M. Nofal, E. Altun, A. Z. Afify and M. Ahsanullah, The generalized Kumaraswamy-G family of distributions, J. Stat. Theory Appl. 18 (2019), 329-342. [5] A. Mahdavi and D. Kundu, A new method for generating distributions with an application to exponential distribution, Commun. Stat.-Theory Methods 46 (2017), 6543-6557. [6] P. O. Peter, B. Oluyede, N. Ndwapi and H. Bindele, The Weibull odd Burr III-G family of distributions with properties and applications, Journal of Statistical Modelling: Theory and Applications 2(1) (2021b), 151-180. [7] R. Silva, F. Gomes-Silva, M. Ramos, G. Cordeiro, P. Marinho and T. A. De Andrade, The exponentiated Kumaraswamy-G class: general properties and application, Rev. Colomb. De Estadística 42 (2019), 1-33. [8] A. Algarni, A. M. Almarashi, I. Elbatal, A. S. Hassan, E. M. Almetwally, A. M. Daghistani and M. Elgarhy, Type I half logistic Burr XG family: Properties, Bayesian, and non-Bayesian estimation under censored samples and applications to COVID-19 data, Math. Probl. Eng. 2021. https://doi.org/0.1155/2021/5461130 [9] A. A. Al-Babtain, I. Elbatal, H. Al-Mofleh, A. M. Gemeay, A. Z. Afify and A. M. Sarg, The flexible Burr X-G family: properties, inference, and applications in engineering science, Symmetry 13(3) (2021), 474. [10] G. Cordeiro, E. Ortega and D. C. da Cunha, The exponentiated generalized class of distributions, J. Data Sci. 11 (2013), 1-27. [11] R. M. I. Arshad, M. H. Tahir, C. Chesneau, F. Jamal, M. Mansoor, M. Zubair and M. Nasir, The gamma Kumaraswamy-G family of distributions: theory, inference and applications, Statistics in Transition New Series 21(5) (2020), 17-40. [12] A. Zubair, M. Elgarhy, G. Hamedani and N. Butt, Odd generalized N-H generated family of distributions with application to exponential model, Pak. J. Stat. Oper. Res. 16 (2020), 53-71. [13] B. Lahcene, A new extended-gamma family of distributions: properties and applications, Journal of Applied Mathematics and Computation 5(1) (2021), 9-17. [14] E. S. El-Sherpieny and M. Elsehetry, Kumaraswamy type I half logistic family of distributions with applications, Gazi Univ. J. Sci. 32 (2019), 333-349. [15] M. M. Ristic and N. Balakrishnan, The gamma exponentiated exponential distribution, Journal of Statistical Computation and Simulation 82(8) (2012), 1191-1206. [16] S. Chakraborty, L. Handique and F. Jamal, The Kumaraswamy Poisson-G family of distribution: Its properties and applications, Ann. Data Sci. 9 (2020), 229-247. [17] L. Handique and S. Chakraborty, The Beta generalized Marshall-Olkin Kumaraswamy-G family of distributions with applications, Int. J. Agricult. Stat. Sci. 13 (2017), 721-733. [18] H. M. Yousof, A. Z. Afify, G. Hamedani and G. R. Aryal, The Burr X generator of distributions for lifetime data, Journal of Statistical Theory and Applications 16(3) (2017), 288-305. [19] M. Bourguignon, R. B. Silva and G. M. Cordeiro, The Weibull-G family of probability distributions, J. Data Sci. 12 (2014), 1253-1268. [20] A. S. Hassan, M. Elgarhy and M. Shakil, Type II half logistic family of distributions with applications, Pak. J. Stat. Oper. Res. 13 (2017), 245-264. [21] L. Souza, W. R. de Oliveira, C. C. R. de Brito, C. Chesneau, R. Fernandes and T. A. E. Ferreira, Sec-G class of distributions: properties and applications, Symmetry 14 (2022), 299. https://doi.org/0.3390/sym14020299 [22] N. Alotaibi, I. Elbatal, E. M. Almetwally, S. A. Alyami, A. S. Al-Moisheer and M. Elgarhy, Truncated Cauchy power Weibull-G class of distributions: Bayesian and Non-Bayesian inference modelling for COVID-19 and carbon fiber data, Mathematics 10 (2022), 1565. [23] I. Elbatal, N. Alotaibi, E. M. Almetwally, S. A. Alyami and M. Elgarhy, On Odd PerU3-G class of distributions: properties, regression model, discretization, Bayesian and Non-Bayesian estimation, and applications, Symmetry 14 (2022), 883. [24] A. A. Al-Babtain, I. Elbatal, C. Chesneau and M. Elgarhy, Sine Topp-Leone-G family of distributions: theory and applications, Open Phys. 18 (2020), 574-593. [25] S. Chakraborty and L. Handique, Properties and data modelling applications of the Kumaraswamy generalized Marshall-Olkin-G family of distributions, J. Data Sci. 605 (2017), 620. [26] R. A. Bantan, F. Jamal, C. Chesneau and M. Elgarhy, A new power Topp-Leone generated family of distributions with applications, Entropy 21 (2019), 1177. https://doi.org/0.3390/e21121177 [27] R. A. Bantan, F. Jamal, C. Chesneau and M. Elgarhy, Truncated inverted Kumaraswamy generated family of distributions with applications, Entropy 21 (2019), 1089. https://doi.org/10.3390/e21111089 [28] M. M. Badr, I. Elbatal, F. Jamal, C. Chesneau and M. Elgarhy, The transmuted odd Fréchet-G family of distributions: Theory and applications, Mathematics 8 (2020), 958. [29] M. Alizadeh, M. Tahir, G. M. Cordeiro, M. Mansoor, M. Zubair and G. Hamedani, The Kumaraswamy Marshal-Olkin family of distributions, J. Egypt. Math. Soc. 23 (2015), 546-557. [30] P. Kavya and M. Manoharan, Some parsimonious models for lifetimes and applications, J. Statist. Comput. Simul. 91 (2021), 3693-3708. [31] I. W. Burr, Cumulative frequency functions, Ann. Math. Stat. 13(2) (1942), 215-232. [32] J. G. Surles and W. J. Padgett, Inference for reliability and stress-strength for a scaled Burr Type X distribution, Lifetime Data Anal. 7(2) (2001), 187-200. [33] O. H. M. Hassan, I. Elbatal, A. H. Al-Nefaie and M. Elgarhy, On the Kavya-Manoharan-Burr X model: estimations under ranked set sampling and applications, Journal of Risk and Financial Management 16 (2023), 19. https://doi.org/10.3390/jrfm16010019A [34] J. P. Klein and M. L. Moeschberger, Survival Analysis: Techniques for Censored and Truncated Data, Springer: Berlin/Heidelberg, Germany, 2006. [35] T. Bjerkedal, Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli, American Journal of Epidemiol. 72(1) (1960), 130-148. [36] S. M. Behairy, G. R. Al-Dayian and A. A. El-Helbawy, The Kumaraswamy-Burr type III-distribution: properties and estimation, J. Adv. Math. Comput. Sci. 14(2) (2016), 1-21.
|