Keywords and phrases: Sea Surface Temperature (SST), median imputation, S-estimator, LTS-estimator, R-squared R2.
Received: February 6, 2023; Accepted: March 15, 2023; Published: June 7, 2023
How to cite this article: Norizan Mohamed, Nur Ain Natasha Baharin, Nur Sabrina Mohamad Ikram, Nor Azlida Aleng, Maharani A. Bakar, Siti Madhihah Abdul Malik, Nur Fadhilah Ibrahim and Miftahuddin, Application of robust regression on sea surface temperature data in the Indian Ocean, JP Journal of Biostatistics 23(2) (2023), 211-225. http://dx.doi.org/10.17654/0973514323012
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] F. A. Schott, S. P. Xie and J. P. McCreary, Jr., Indian Ocean circulation and climate variability, Rev. Geophys. 47(RG1002) (2009), 5-7. [2] N. H. Saji, B. N. Goswami, P. N. Vinayachandran and T. Yamagata, Adipole mode in the tropical Indian Ocean, Journal Nature 401 (1999), 360-363. [3] E. Mulyana, Hubungan antara Anomali Suhu Permukaan Laut dengan Curah Hujan di Jawa, Jurnal Sains dan Tekhnologi Modifikasi Cuaca 2(8) (2000), 125-132. [4] IPCC, Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. [5] D. Chan, Combining statistical, physical, and historical evidence to improve historical sea-surface temperature records, Harvard Data Science Review 3(1) (2021), 1-29. [6] C. Reid, J. Marshall, D. Logan and D. Kleine, Terumbu Karang dan Perubahan Iklim, Terjemahan dari Coral Reefs and Climate Change, oleh Badan Penelitian dan Pengembangaan Kelautan dan Perikanan and Kementerian Kelautan dan Perikanan Indonesia, Panca Jaya, Jakarta, 2009. [7] Miftahuddin, O. Fanny, S. Ichsan, M. A. Bakar and N. Mohamed, Detection of missing sea surface temperatures (SST) data in the Indian Ocean, JP Journal of Biostatistics 18(1) (2021), 51-66. [8] Miftahuddin, N. Mohamed, M. A. Bakar, Nur Shima, Fadhli and S. Ichsan, Prediction of rainfall using ARIMA mixed models, Applied Mathematics and Computational Intelligence 10 (2021), 101-126. [9] P. J. Rousseeuw, Least median squares regression, J. Amer. Statist. Assoc. 79 (1984), 871-880. [10] V. J. Yohai, High breakdown-point and high efficiency robust estimates for regression, Ann. Statist. 15(2) (1987), 642-656. [11] N. Gokmen and A. Erar, Robust estimators in linear regression: a simulation study and an application on health care, 11th International Statistics Days Conference, Bodrum Akyarlar, 2018. [12] N. A. Aleng, N. N. Naing, N. Mohamed and M. A. Bakar, An alternative algorithm weighted MM-estimation for detection of outliers, JP Journal of Biostatistics 17(2) (2020), 559-568. [13] D. M. Khan, A. Yaqoob, S. Zubair, M. A. Khan, Z. Ahmad and O. A. Alamri, Applications of robust regression techniques: an econometric approach, Math Probl. Eng. 1(1) (2021), 1-9. [14] Y. Susanti and H. Pratiwi, M estimation, S estimation, and MM estimation in robust regression, Int. J. Pure Appl. Math. 91(3) (2014), 349-360. [15] M. Momeni, M. D. Nayeri, A. F. Ghayoumi and H. Ghorbani, Robust regression and its application in financial data analysis, World Academy of Science, Engineering and Technology 47 (2010), 521-526.
|