Keywords and phrases: fixed point, metric spaces, contraction.
Received: February 22, 2023; Accepted: May 13, 2023; Published: June 3, 2023
How to cite this article: Abdelkarim Kari, Homan Emadifar and Adil Baiz, Fixed point theorems for generalized -contraction on metric spaces, JP Journal of Fixed Point Theory and Applications 19 (2023), 7-33. http://dx.doi.org/10.17654/0973422823002
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181. [2] F. E. Browder, On the convergence of successive approximations for nonlinear functional equations, Nederl. Akad. Wetensch. Proc. Ser. A Indag. Math. 30 (1968), 27-35. [3] N. Hussain, M. A. Kutbi and P. Salimi, Fixed point theory in α-complete metric spaces with applications, Abstr. Appl. Anal. 2014 (2014), 11. [4] N. Hussain, V. Parvanehb, B. Alamria and Z. Kadelburg, J. F-HR-type contraction on complete rectangular b metric spaces, Nonlinear Sci. Appl. 10 (2017), 1030-1043. [5] M. Jleli, E. Karapmar and B. Samet, Further generalizations of the Banach contraction principle, J. Inequal. Appl. 2014 (2014), Article ID 439. [6] M. Jleli and B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2020 (2020), Article ID 8833214, 12 pages https://doi.org/10.1155/2020/8833214 [7] R. Kannan, Some results on fixed points-II, Amer. Math. Monthly 76 (1969), 405 408. [8] A. Kari, M. Rossafi, E. Marhrani and M. Aamri, -contraction on -complete rectangular b-metric spaces, Int. J. Math. Mathematical Sciences (2020), Article ID 5689458. [9] A. Kari, M. Rossafi, E. Marhrani and M. Aamri, New fixed point theorems for -contraction on complete rectangular b-metric spaces, Abstract and Applied Analysis Volume 2020, Article ID 8833214. [10] Abdelkarim Kari, Mohamed Rossafi, Hamza Saffaj El Miloudi Marhrani and Mohamed Aamri, Fixed-point theorems for -contraction in generalized asymmetric metric spaces, International Journal of Mathematics and Mathematical Sciences Volume 2020 (2020), DOI: 10.1155/2020/8867020, Article ID 8867020. [11] A. Kari, M. Rossafi, E. Marhrani and M. Aamri, Fixed-point theorem for nonlinear F-contraction via w-distance, Advances in Mathematical Physics 2020 (2020), Article ID 6617517, https://doi.org/10.1155/2020/6617517 [12] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14(2) (1971), 121-124. [13] N. Hussain and P. Salimi, Suzuki-Wardowski type fixed point theorems for α-G-F-contractions, Taiwanese J. Math. 18(6) (2014), 1879-1895. DOI: 10.11650/tjm.18.2014-4462 [14] D. Zheng, Z. Cai and P. Wang, New fixed point theorems for -contraction in complete metric spaces, J. Nonlinear Sci. Appl. 10 (2017), 2662-2670.
|