Keywords and phrases: pseudo-elasticity, homogeneous, residual strain.
Received: March 1, 2023; Accepted: March 28, 2023; Published: June 2, 2023
How to cite this article: Rajesh Kumar, Pure axial shear of a pseudo-elastic long circular cylindrical tube, International Journal of Materials Engineering and Technology 22(1) (2023), 7-22. http://dx.doi.org/10.17654/0975044423002
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] R. W. Ogden and D. G. Roxburgh, A pseudo-elastic model for the Mullins effect in filled rubber, Proc. R. Soc. London A 455 (1999a), 2861-2877. [2] R. W. Ogden, Stress softening and residual strain in the azimuthal shear of a pseudo-elastic circular cylindrical tube, Internat. J. Non-Linear Mech. 36 (2001), 477-487. [3] K. A. Lazopoulos and R. W. Ogden, Nonlinear elasticity theory with discontinuous internal variables, Math. Mech. Solids 3 (1998), 29-51. [4] A. Hoger, On the determination of residual stress in an elastic body, J. Elasticity 16 (1986), 303-324. [5] B. E. Johnson and A. Hoger, The use of strain energy to quantify the effect of residual stress on mechanical behavior, Math. Mech. Solids 3 (1998), 447-470. [6] M. F. Beatty and S. Krishnaswamy, A theory of soft softening in incompressible isotropic elastic materials, J. Mech. Phys. Solids 48 (2000), 1931-1965. [7] S. Krishnaswamy and M. F. Beatty, The Mullins effect in compressible solids, Int. J. Engg. Sci. 38 (2000), 1397-1414. [8] R. S. Rivlin, Large elastic deformations of isotropic materials. VI. Further results in the theory of torsion, shear and flexure, Philos. Trans. Roy. Soc. London Ser. A 242 (1949), 173-195. [9] R. W. Ogden, Non-linear Elastic Deformations, Dover, New York, 1997. [10] X. Jiang and R. W. Ogden, Some new solutions for the axial shear of a circular cylindrical tube of compressible elastic material, Internat. J. Non-Linear Mech. 35 (2000), 361-369. [11] Kuldeep Kumar and Rajesh Kumar, Pure azimuthal shear in an elastic dielectric material, Mathematical Sciences Quarterly Journal 4(1) (2000), 107-124. [12] C. O. Horgan and G. Saccomandi, Pure azimuthal shear of isotropic incompressible nonlinearly elastic materials with limiting chain extensibility, Internat. J. Non-Linear Mech. 36 (2001a), 465-475. [13] J. G. Simmonds and P. W. Warne, Azimuthal shear of compressible or incompressible rubber like polar orthotropic tubes of infinite extent, Internat. J. Non-Linear Mech. 27 (1992), 447-464. [14] L. M. Kanner and C. O. Horgan, Inhomogeneous shearing of strain-stiffening rubber-like hollow circular cylinders, Int. J. Solids and Structures 45 (2008), 5464-5482. [15] Q. Jiang and J. K. Knowles, A class of compressible elastic materials capable of sustaining finite anti-plane shear, J. Elasticity 25 (1991), 193-201. [16] D. A. Polignone and C. O. Horgan, Axisymmetric finite anti-plane shear of compressible nonlinearly elastic circular tubes, Quart. Appl. Math. 50 (1992), 323-341. [17] Q. Jiang and M. F. Beatty, On compressible materials capable of sustaining axisymmetric shear deformation. I. Anti-plane shear of isotropic hyperelastic materials, J. Elasticity 39 (1995), 75-95. [18] C. O. Horgan and G. Saccomandi, Pure axial shear of isotropic incompressible non linearly elastic materials with limiting chain extensibility, J. Elasticity 57 (1999b), 307-319. [19] C. O. Horgan, G. Saccomandi and I. Sgura, A two-point boundary value problem for the axial shear of hardening isotropic incompressible nonlinearly elastic materials, SIAM J. Appl. Math. 62 (2002), 1712-1727. [20] A. S. Wineman, Some results for generalized neo-Hookean elastic materials, Internat. J. Non-Linear Mech. 40 (2005), 271-279. [21] G. A. Holzapfel, Nonlinear Solid Mechanics, Wiley, Chichester, 2000. [22] X. Jiang and R. W. Ogden, On azimuthal shear of a circular cylindrical tube of compressible elastic material, Quart. J. Mech. Appl. Math. 51 (1998), 143-158.
|