Keywords and phrases: equitable dominating set, equitable domination number, global dominating set, global equitable dominating set, global equitable domination number.
Received: February 23, 2023; Accepted: May 18, 2023; Published: May 29, 2023
How to cite this article: S. K. Vaidya and R. M. Pandit, The global equitable domination in graphs, Advances and Applications in Discrete Mathematics 39(2) (2023), 155-167. http://dx.doi.org/10.17654/0974165823043
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References [1] K. Anjana, Anupama Dinesh and P. Manjusha, Global domination number of squares of certain graphs, Turkish Journal of Computer and Mathematics Education 12(13) (2021), 1980-1986. [2] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, 2nd ed., Springer, New York, 2012. [3] B. Basavanagoud and V. V. Teli, Equitable global domination in graphs, International Journal of Mathematical Archive 6(3) (2015), 122-125. [4] R. C. Brigham and R. D. Dutton, Factor domination in graphs, Discrete Mathematics 86 (1990), 127-136. [5] T. Gallai, Über extreme Punkt-und Kantenmengen, Ann. Univ. Sci. Budapest, Eotvos Sect. Math. 2 (1959), 133-138. [6] D. B. Gangadharappa and A. R. Desai, On the dominating of a graph and its complement, Journal of Mathematics and Computer Science 2(2) (2011), 222-233. [7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, 1998. [8] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs - Advanced Topics, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, 1998. [9] A. Nellai Murugan and G. Victor Emmanuel, Degree equitable domination number and independent domination number of a graph, International Journal of Innovative Research in Science, Engineering and Technology 2(11) (2013), 6419-6423. [10] S. Revathi and C. V. R. Harinarayanan, Equitable domination in fuzzy graphs, International Journal of Engineering Research and Applications 4 (2014), 80-83. [11] E. Sandueta, Equitable domination in some graphs, Applied Mathematical Sciences 13(7) (2019), 309-314. [12] E. Sampathkumar, The global domination number of a graph, Journal of Mathematical and Physical Sciences 23(5) (1989), 377-385. [13] V. Swaminathan and K. Dharmalingam, Degree equitable domination on graphs, Kragujevac Journal of Mathematics 35(1) (2011), 191-197. [14] S. K. Vaidya and R. M. Pandit, Some new results on global dominating sets, ISRN Discrete Mathematics, Vol. 2012, Article ID 852129, 6 pages, 2012. doi: 10.5402/2012/852129 [15] S. K. Vaidya and R. M. Pandit, Some results on global dominating sets, Proyecciones Journal of Mathematics 32(3) (2013), 235-244. [16] S. K. Vaidya and R. M. Pandit, Global equitable domination number of some wheel related graphs, International Journal of Mathematical Combinatorics 3 (2016), 77-85. [17] S. K. Vaidya and R. M. Pandit, Global equitable domination in some degree splitting graphs, Notes on Number Theory and Discrete Mathematics 24(2) (2018), 74-84. [18] D. B. West, Introduction to Graph Theory, Prentice-Hall of India, New Delhi, 2003. [19] V. Zverovich and A. Poghosyan, On roman, global and restrained domination in graphs, Graphs and Combinatorics 27(5) (2011), 755-768.
|