Keywords and phrases: second domination hyper index, domination degree, minimal domination set.
Received: February 7, 2023; Revised: February 27, 2023; Accepted: March 29, 2023; Published: May 23, 2023
How to cite this article: S. Raju, Puttaswamy and S. R. Nayaka, On the second domination hyper index of graph and some graph operations, Advances and Applications in Discrete Mathematics 39(1) (2023), 125-143. http://dx.doi.org/10.17654/0974165823041
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] H. Ahmed, A. Alwardi, R. M. Salestina and N. D. Soner, Forgotten domination, hyper domination and modified forgotten domination indices of graphs, J. Discrete Math. Sci. Cryptogr. 24(2) (2021), 353-368. https://DOI:10.1080/09720529.2021.1885805. [2] H. Ahmed, A. Alwardi and R. M. Salestina, Domination, -domination topological indices and -polynomial of some chemical structures applied for the treatment of COVID-19 patients, Biointerface Research in Applied Chemistry 5 (2021), 13290-13302. [3] H. Ahmed, M. Reza Farahani, A. Alwardi and R. M. Salestina, Domination topological properties of some chemical structures using -polynomial approach, Eurasian Chemical Communications 3(4) (2021), 210-218. https://DOI:10.22034/ecc.2021.271992.1133. [4] H. Ahmed, A. Alwardi and R. M. Salestina, Domination topological indices and their polynomials of a firefly graph, J. Discrete Math. Sci. Cryptogr. 24(2) (2021), 325-341. https://DOI:10.1080/09720529.2021.1882155. [5] H. Ahmed, A. Alwardi and S. Wazzan, Domination topological properties of polyhydroxybutyrate and polycaprolactone with QSPR analysis, Nanosystems Physics Chemistry Mathematics 12(6) (2021), 664-671. https://DOI:10.17586/2220-8054-2021-12-6-664-671. [6] H. Ahmed, R. Rangarajan, A. Alameri and R. M. Salestina, Computation domination and -domination topological indices of hexane isomers via -polynomial with QSPR analysis, Biointerface Research in Applied Chemistry 13(2) (2022), 132-182. https://DOI:10.33263/BRIAC132.182. [7] A. Alameri, M. Alsharafi and H. Ahmed, The second hyper-Zagreb indices and coindices of disjunction and symmetric difference of graphs, International Journal of Advanced Chemistry Research 1(1) (2022), 37-41. [8] A. S. Ashwini, H. Ahmed, N. D. Soner and M. Cancan, Domination version: Sombor index of graphs and its significance in predicting physicochemical properties of butane derivatives, Eurasian Chemical Communications 5(1) (2023), 91-102. https://DOI:10.22034/ecc.2023.357241.1522. [9] H. Ahmed, A. Alsinai, A. Khan and H. A. Othman, The eccentric Zagreb indices for the subdivision of some graphs and their applications, Appl. Math. 16(3) (2022), 467-472. [10] S. Ahmad, H. M. A. Siddiqui, A. Ali, M. R. Farahani, M. Imran, I. N. Cangul, On Wiener index and Wiener polarity index of some polyomino chains, J. Discrete Math. Sci. Cryptogr. 22(7) (2019), 1151-1164. https://DOI:10.1080/09720529.2019.1688965. [11] A. Alsinai, B. Basavanagoud, M. Sayyed and M. R. Farahani, Sombor index of some nanostructures, J. Prime Res. Math. 17(2) (2021), 123-133. [12] A. Alsinai, A. Alwardi and N. D. Soner, On reciprocal leap function of graph, J. Discrete Math. Sci. Cryptogr. 24(2) (2021), 307 324. [13] A. Alsinai, A. Saleh, H. Ahmed, L. N. Mishra and N. D. Soner, On fourth leap Zagreb index of graphs, Discrete Math. Algorithms Appl. 15 (2023), Paper No. 2250077. https://doi.org/10.1142/S179383092250077X. [14] F. V. Fomin, F. Grandoni, A. V. Pyatkin and A. A. Stepanov, Combinatorial bounds via measure and conquer: bounding minimal dominating sets and applications, ACM Trans. Algorithms 5(1) (2008), 1-18. [15] W. Gao and M. R. Farahani, The hyper-Zagreb index for an infinite family of nanostar dendrimer, J. Discrete Math. Sci. Cryptogr. 20(2) (2017), 515-523. DOI:10.1080/09720529.2016.1220088. [16] W. Gao, L. Shi and M. R. Farahani, Szeged related indices of TUAC6 J. Discrete Math. Sci. Cryptogr. 20(2) (2017), 553 563. https://DOI:10.1080/09720529.2016.1228312. [17] I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals, XII. Acyclic polyenes, J. Chem. Phys. 62 (1975), 3399-3405. [18] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total -electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538. [19] F. Harary, Graph Theory, Narosa Publishing House, New Delhi, 2001. [20] A. M. Hanan Ahmed, A. Alwardi and R. M. Salestina, On domination topological indices of graphs, International Journal of Analysis and Applications 19(1) (2021), 47-64. https://DOI.org/10.28924/2291-8639-19- 2021-47. [21] H. Ahmed, M. H. A. Qasmi, A. Alsinai, M. Alaeiyan, M. R. Farahani and M. Cancan, Distance and degree based topological polynomial and indices of X-level wheel graph, J. Prime Res. Math. 17(2) (2021), 39-50. [22] A. J. M. Khalaf, M. F. Hanif, M. K. Siddiqui and M. R. Farahani, On degree based topological indices of bridge graphs, J. Discrete Math. Sci. Cryptogr. 23(6) (2020), 1139-1156. https://DOI:10.1080/09720529.2020.1822040. [23] A. J. M. Khalaf, A. Q. Baig, M. R. Azhar, M. Imran and M. R. Farahani, The eccentric based Zagreb indices of carbon graphite, J. Discrete Math. Sci. Cryptogr. 23(6) (2020), 1121-1137. https://DOI:10.1080/09720529.2020.1818448. [24] Ivan Gutman, Kragujevac trees and their energy, Appl. Math. Inform. Mech. 2 (2014), 71-79. [25] G. Wei, M. R. Farahani and M. K. Siddiqui, On the first and second Zagreb and first and second hyper-Zagreb indices of carbon nanocones CNCk [n], Journal of Computational and Theoretical Nanoscience 13 (2016), 7475-7482. [26] A. Modabish, M. Nazri Husin, A. Abdu Alameri, H. Ahmed, M. Alaeiyan, M. R. Farahani and M. Cancan, Enumeration of spanning trees in a chain of diphenylene graphs, J. Discrete Math. Sci. Cryptogr. 25(1) (2022), 241-251.
|