Keywords and phrases: automatic computation, crosscap number, alternating knot.
Received: March 8, 2023; Accepted: April 14, 2023; Published: May 23, 2023
How to cite this article: Kaito Yamada and Noboru Ito, Automatic computation of crosscap number of alternating knots, JP Journal of Geometry and Topology 29(1) (2023), 35-45. http://dx.doi.org/10.17654/0972415X23004
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. Hatcher and W. Thurston, Incompressible surfaces in 2-bridge knot complements, Invent. Math. 79(2) (1985), 225-246. [2] Mikami Hirasawa and Masakazu Teragaito, Crosscap numbers of 2-bridge knots, Topology 45(3) (2006), 513-530. [3] Kazuhiro Ichihara and Shigeru Mizushima, Crosscap numbers of pretzel knots, Topology Appl. 157(1) (2010), 193-201. [4] Noboru Ito and Yusuke Takimura, Crosscap number and knot projections, Internat. J. Math. 29(12) (2018), 21. [5] Noboru Ito and Yusuke Takimura, Crosscap number of knots and volume bounds, Internat. J. Math. 31(13) (2020), 33. [6] Noboru Ito and Yusuke Takimura, Crosscap number three alternating knots, J. Knot Theory Ramifications 31(4) (2022), 11. [7] Noboru Ito and Kaito Yamada, Plumbing and computation of crosscap number, JP Journal of Geometry and Topology 26(2) (2021), 103-115. [8] Efstratia Kalfagianni and Christine Ruey Shan Lee, Crosscap numbers and the Jones polynomial, Adv. Math. 286 (2016), 308-337. [9] Thomas Kindred, Crosscap numbers of alternating knots via unknotting splices, Internat. J. Math. 31(7) (2020), 30. [10] Masakazu Teragaito, Crosscap numbers of torus knots, Topology Appl. 138(1-3) (2004), 219-238.
|