Keywords and phrases: fixed point, Cauchy sequence, felt metric, dislocated metric, partial metric.
Received: April 6, 2023; Accepted: May 10, 2023; Published: May 18, 2023
How to cite this article: Lech Pasicki, A note on some fixed point theorems, JP Journal of Fixed Point Theory and Applications 19 (2023), 1-5. http://dx.doi.org/10.17654/0973422823001
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] L. Ćirić, A new fixed-point theorem for contractive mapping, Publ. Inst. Math. (Beograd) (N.S.) 30(44) (1981), 25-27. [2] P. Hitzler and A. K. Seda, Dislocated topologies, J. Electr. Engin. 51(12) (2000), 3-7. [3] M. Kuczma and B. Choczewski, Iterative functional equations, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, UK, Vol. 32, 1990. [4] S. G. Matthews, Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci. 728 (1994), 183 197. [5] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326-329. [6] L. Pasicki, Partial metric, fixed points, variational principles, Fixed Point Theory 17(2) (2016), 435-448. [7] L. Pasicki, Some extensions of the Meir-Keeler theorem, Fixed Point Theory Appl. 2017, Paper No. 1, 10 pp. [8] L. Pasicki, A strong fixed point theorem, Topology Appl. 282 (2020), 107300, 18 pp. DOI: 10.1016/j.topol.2020.107300. [9] L. Pasicki, My last fixed point theorem, 2022, 3 pp. arXiv:2107.01022v3 [math.GM].
|