Keywords and phrases: endometriosis, random forest, decision tree, extreme gradient boosting, logistic regression.
Received: January 3, 2023; Accepted: March 17, 2023; Published: May 15, 2023
How to cite this article: S. Visalaxi, T. Sudalaimuthu and K. Hemapriya, Automated evaluation of supervised learning algorithm for endometriosis prediction, JP Journal of Biostatistics 23(2) (2023), 149-172. http://dx.doi.org/10.17654/0973514323009
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] T. Hirata, K. Koga and Y. Osuga, Extra-pelvic endometriosis: a review, Reproductive Medicine and Biology 19(4) (2020), 323-333. [2] N. Marlin, C. Rivas, J. Allotey, J. Dodds, A. Horne and E. Ball, Development and validation of clinical prediction models for surgical success in patients with endometriosis: protocol for a mixed methods study, JMIR Research Protocols 10(4) (2021), e20986. [3] F. Pashizeh, R. Mansouri, F. Davari-Tanha, R. Hosseini, Z. Asgari, H. Aghaei and S. Rajaei, Alterations of CD4+T cell subsets in blood and peritoneal fluid in different stages of endometriosis, International Journal of Fertility and Sterility 14(3) (2020), 201. doi: 10.22074/ijfs.2020.6127. [4] A. Nankali, M. Kazeminia, P. Jamshidi, S. Shohaimi, N. Salari, M. Mohammadi and A. Hosseinian-Far, The effect of unilateral and bilateral laparoscopic surgery for endometriosis on Anti-Mullerian Hormone (AMH) level after 3 and 6 months: a systematic review and meta-analysis, Health and Quality of Life Outcomes 18(1) (2020), 1-9. [5] N. Sindan, A. Bhandari, N. Sindan, R. Kc, E. Xia and Y. Lin, Clinical factors influencing the pregnancy outcome after laparoscopic treatment in endometriosis-associated infertility patients: a retrospective study, American Journal of Translational Research 13(4) (2021), 2399. [6] V. Sankaravadivel and S. Thalavaipillai, Symptoms based endometriosis prediction using machine learning, Bulletin of Electrical Engineering and Informatics 10(6) (2021), 3102-3109. [7] N. Katsaouni, A. Tashkandi, L. Wiese and M. Schulz, Machine learning based disease prediction from genotype data, Biological Chemistry 402(8) (2021), 871-885. [8] S. Orozco-Arias, J. Piña, R. Tabares-Soto, L. Castillo-Ossa, R. Guyot and G. Isaza, Measuring performance metrics of machine learning algorithms for detecting and classifying transposable elements, Processes 8(6) (2020), 638. [9] M. Pal and S. Parija, Prediction of heart diseases using random forest, Journal of Physics: Conference Series 1817(1) (2021), 012009. [10] J. She, D. Su, R. Diao and L. Wang, A joint model of random forest and artificial neural network for the diagnosis of endometriosis, Frontiers in Genetics 13 (2022), 12-20. [11] S. Visalaxi, D. Punnoose and T. S. Muthu, An analogy of endometriosis recognition using machine learning techniques, 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), 2021, pp. 739-746. doi: 10.1109/ICICV50876.2021.9388403. [12] S. Bendifallah, A. Puchar, S. Suisse, L. Delbos, M. Poilblanc, P. Descamps, F. Golfier, C. Touboul, Y. Dabi and E. Daraï, Machine learning algorithms as new screening approach for patients with endometriosis, Scientific Reports 12(1) (2022), 639-651. [13] F. Reis, P. Santulli, L. Marcellin, B. Borghese, M. Lafay-Pillet and C. Chapron, Superficial peritoneal endometriosis: clinical characteristics of 203 confirmed cases and 1292 endometriosis-free controls, Reproductive Sciences 27(1) (2020), 309-315. [14] E. Vesale, H. Roman, C. Abo, L. Benoit, J. Tuech, E. Darai and S. Bendifallah, Predictive approach in managing voiding dysfunction after surgery for deep endometriosis: a personalized nomogram, International Urogynecology Journal 32(5) (2020), 1205-1212. [15] Y. Wang, M. Chang, R. Chiang, L. Hwang, C. Lee and Y. Wang, Mining medical data: a case study of endometriosis, Journal of Medical Systems 37(2) (2013), 1-7. [16] L. Méar, C. Pineau, F. Vialard and J. Velez de la Calle, Endometriosis screening in patients attending an IVF clinic: a proof-of-concept retrospective cohort study, Human Fertility 25(2) (2020), 313-322. [17] B. Estácio da Veiga, D. Tavares, J. Metello, F. Ferreira, P. Ferreira and J. Fonseca, Predicting the chances of live birth for couples undergoing IVF-ICSI: a novel instrument to advise patients and physicians before treatment, F1000 Research 8 (2019), 1585. [18] B. Weisheng, C. Nezhat, G. Huang, Y. Mao, N. Sidell and R. Huang, Discovering endometriosis biomarkers with multiplex cytokine arrays, Clinical Proteomics 16(1) (2019), 1-9. [19] Bingtao Zhang et al., Feature selection algorithm for high dimensional biomedical data classification based on redundant removal, Proceedings of the 32nd International BCS Human Computer Interaction Conference, Vol. 32, 2018, pp. 1-5. doi: 10.14236/ewic/HCI2018.230. [20] E. J. Kleczyk, T. Yadav and S. Amirtharaj, Applying machine learning algorithms to predict endometriosis onset, Endometriosis - Recent Advances, New Perspectives and Treatments [Working Title], United Kingdom, London, IntechOpen, 2021. doi: 10.5772/intechopen.101391. [21] Beschi Raja, R. Anitha, R. Sujatha, V. Roopa and S. Sam Peter, Diabetics prediction using gradient boosted classifier, International Journal of Engineering and Advanced Technology (IJEAT) 9(1) (2019), 2249. Available at SSRN: https://ssrn.com/abstract=3490444. [22] Amardip Kumar Singh, A comparative study on disease classification using machine learning algorithms, Proceedings of 2nd International Conference on Advanced Computing and Software Engineering (ICACSE), 2019. http://dx.doi.org/10.2139/ssrn.3350251. [23] S. Visalaxi, T. Sudalaimuthu and V. Krithika, Endometriosis laparoscopic image reconstruction using PCA and IPCA, 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), 2021, pp. 1-4. doi: 10.1109/ICAECA52838.2021.9675620. [24] A. Leibetseder, S. Kletz, K. Schoeffmann, S. Keckstein and J. Keckstein, GLENDA: gynecologic laparoscopy endometriosis dataset, Proceedings of the 26th International Conference on Multimedia Modeling, MMM, Springer, Cham, 2020. [25] K. P. N. V. Satya Sree, J. Karthik, C. Niharika, P. V. V. S. Srinivas, N. Ravinder and C. Prasad, Optimized conversion of categorical and numerical features in machine learning models, 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2021, pp. 294-299. doi: 10.1109/I-SMAC52330.2021.9640967. [26] A. A. Sa’id, Z. Rustam, V. V. P. Wibowo, Q. S. Setiawan and A. R. Laeli, Linear support vector machine and logistic regression for cerebral infarction classification, 2020 International Conference on Decision Aid Sciences and Application (DASA), 2020, pp. 827-831. doi: 10.1109/DASA51403.2020.9317065. [27] Z. Li, L. Wang, L. S. Huang, M. Zhang, X. Cai, F. Xu and G. Liu, Efficient management strategy of COVID-19 patients based on cluster analysis and clinical decision tree classification, Scientific Reports 11(1) (2021), 1-13. [28] B. Kalaiselvi and M. Thangamani, An efficient Pearson correlation based improved random forest classification for protein structure prediction techniques, Measurement 162 (2020), 107885. [29] S. Xu, S. Liu, H. Wang, W. Chen, F. Zhang and Z. Xiao, A hyperspectral image classification approach based on feature fusion and multi-layered gradient boosting decision trees, Entropy 23(1) (2020), 20. doi: 10.3390/e23010020. [Online]. Available: http://dx.doi.org/10.3390/e23010020. [30] Jennifer Salau, Jan Henning Haas, Wolfgang Junge and Georg Thaller, Determination of body parts in Holstein Friesian cows comparing neural networks and k nearest neighbour classification, Animals (Basel) 11 (2020), 50. [31] M. Hammad, N. Hewahi and W. Elmedany, T-SNERF: a novel high accuracy machine learning approach for intrusion detection systems, IET Information Security 15(2) (2021), 178-190. [32] F. Piccialli, F. Calabrò, D. Crisci, S. Cuomo, E. Prezioso, R. Mandile and R. Auricchio, Precision medicine and machine learning towards the prediction of the outcome of potential celiac disease, Scientific Reports 11(1) (2021), 1-10. [33] A. Fatima, Y. Li, T. T. Hills and M. Stella, DASentimental: detecting depression, anxiety, and stress in texts via emotional recall, cognitive networks, and machine learning, Big Data and Cognitive Computing 5(4) (2021), 77. [34] D. Fourure, M. U. Javaid, N. Posocco and S. Tihon, Anomaly detection: how to artificially increase your F1-score with a biased evaluation protocol, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, Cham, 2021, pp. 3-18. [35] B. R. Laxmi Sree and M. S. Vijaya, A weighted mean square error technique to train deep belief networks for imbalanced data, International Journal of Simulation: Systems, Science and Technology 19 (2019), 14.1 to 14.8. [36] A. Umamageswari, Film proposals utilizing machine learning with root mean square error, International Journal of Progressive Research in Science and Engineering 2(2) (2021), 8-18. [37] D. Zhu, G. Li, B. Wang, X. Wu and T. Yang, When AUC meets DRO: optimizing partial AUC for deep learning with non-convex convergence guarantee, Proceedings of the 2020 SIAM International Conference on Data Mining, 2020, pp. 1-9. [38] H. Zhou, X. Wang and R. Zhu, Feature selection based on mutual information with correlation coefficient, Applied Intelligence 52(5) (2022), 5457-5474. [39] M. Vijayalakshmi and V. J. Peter, CNN based approach for identifying banana species from fruits, Int. J. Inf. Technol. 13 (2022), 27-32. https://doi.org/10.1007/s41870-020-00554-1.
|