Keywords and phrases: infinite words, maximal return time, separator factors, ancestor, singular factors, recurrence function.
Received: February 14, 2023; Accepted: March 20, 2023; Published: May 12, 2023
How to cite this article: Idrissa Kaboré, Boucaré Kientéga and Mahamadi Nana, Recurrence function of the ternary Thue-Morse word, Advances and Applications in Discrete Mathematics 39(1) (2023), 43-72. http://dx.doi.org/10.17654/0974165823035
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] P. Arnoux and G. Rauzy, Réprésentation géométrique de suites de complexité Bull. Soc. Math. Fr. 119(2) (1991), 199-215. [2] L. Balkova, Return words and recurrence function of a class of infinite words, Acta Polytechnica 47(2-3) (2007), 15-19. [3] L. Balkova, E. Pelantova and W. Steiner, Return words in fixed points of substitutions, Monatsh. Math. 155(3-4) (2008), 251-263. [4] J. Cassaigne, Sequences with grouped factors, in Developments in Language Theory III, Aristotle University of Thessaloniki, 1998, pp. 211-222. [5] J. Cassaigne, Special factors of sequences with linear subword complexity, Developments in Language Theory II, World Scientific, 1996, pp. 25-34. [6] J. Cassaigne, Limit values of the recurrence quotient of Sturmian sequences, Theoret. Comput. Sci. 218 (1999), 3-12. [7] J. Cassaigne, Recurrence in Infinite Words, LNCS, Springer Verlag 2010 (2001), 1-11. [8] N. Chekhova, Fonctions de récurrence des suites d’Arnoux-Rauzy et réponse à une question de Morse et Hedlund, Ann. Inst. Four. 56(7) (2006), 2249-2270. [9] F. Durand, A characterization of substitutive sequences using return words, Discrete Math. 179 (1998), 89-101. [10] F. Durand, B. Host and C. Skau, Substitutional dynamical Bratelli diagrams and dimension groups, Ergodic Theory Dynam. System 19 (1999), 953-993. [11] I. Kaboré and B. Kientéga, Abelian complexity of Thue-Morse word over a ternary alphabet, Combinatorics on Words (Words 2017), S. Brlek et al., eds., Ser. LNCS 10432 (2017), 132-143. [12] I. Kaboré and B. Kientéga, Some combinatorial properties of the ternary Thue-Morse word, In. J. Appl. Math. 31(18) (2018), 181-197. [13] F. Mignosi and P. Séebold, If a DOL-language is k-power-free then it is circular, A. Lingas, R. Karlsson and S. Carlsson, eds., Aut. Lang. Prog., LNCS, Springer Berlin Heidelberg 700 (1993), 507-518. [14] M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62(2) (1940), 1-42. [15] M. Queffélec, Substitution Dynamical Systems - Spectral Analysis, Lecture Notes in Math., Springer Berlin, 1294 (1987), 1-11. [16] L. Vuillon, A characterisation of Sturmian words by return words, European J. Combin. 22 (2001), 263-275.
|