Keywords and phrases: odd generalized Nadarajah-Haghighi family, moment exponential, entropy, estimation, applications.
Received: March 8, 2023; Accepted: April 24, 2023; Published: May 10, 2023
How to cite this article: Mohammed Nasser Alshahrani, Modeling the medical data using a new three-parameter distribution with statistical properties, JP Journal of Biostatistics 23(2) (2023), 125-147. http://dx.doi.org/10.17654/0973514323008
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] R. A. ZeinEldin, Ch. Chesneau, F. Jamal, M. Elgarhy, A. M. Almarashi and S. Al-Marzouki, Generalized truncated Fréchet generated family distributions and their applications, Computer Modeling in Engineering and Sciences 126(1) (2021), 1-29. [2] M. Haq and M. Elgarhy, The odd Fréchet-G family of probability distributions, J. Stat. Appl. Probab. 7 (2018), 189-203. [3] M. Muhammad, R. A. R. Bantan, L. Liu, C. Chesneau, M. H. Tahir, F. Jamal and M. Elgarhy, A new extended cosine-G distributions for lifetime studies, Mathematics 9 (2021), 2758. [4] A. Z. Afify and M. Alizadeh, The odd Dagum family of distributions: properties and applications, J. Appl. Probab. Stat. 15 (2020), 45-72. [5] I. Elbatal, N. Alotaibi, E. M. Almetwally, S. A. Alyami and M. Elgarhy, On odd Perks-G class of distributions: properties, regression model, discretization, Bayesian and non-Bayesian estimation, and applications, Symmetry 14 (2022), 883. [6] M. Haq, M. Elgarhy and S. Hashmi, The generalized odd Burr III family of distributions: properties, and applications, Journal of Taibah University for Science 13(1) (2019), 961-971. [7] H. S. Bakouch, C. Chesneau and M. G. Enany, A new weighted exponential distribution as an alternative to the Weibull distribution and its fit to reliability data, International Journal of Data Science 6(3) (2021), 223-240. [8] R. A. Bantan, F. Jamal, C. Chesneau and M. Elgarhy, Truncated inverted Kumaraswamy generated family of distributions with applications, Entropy 21 (2019), 1089. [9] A. S. Hassan, M. Elgarhy and M. Shakil, Type II half logistic family of distributions with applications, Pak. J. Stat. Oper. Res. 13 (2017), 245-264. [10] H. Al-Mofleh, M. Elgarhy, A. Z. Afify and M. S. Zannon, Type II exponentiated half logistic generated family of distributions with applications, Electronic Journal of Applied Statistical Analysis 13(2) (2020), 536-561. [11] A. Z. Afify, M. Alizadeh, H. M. Yousof, G. Aryal and M. Ahmad, The transmuted geometric-G family of distributions: theory and applications, Pakistan J. Statist. 32 (2016), 139-160. [12] R. A. Bantan, C. Chesneau, F. Jamal and M. Elgarhy, On the analysis of new COVID-19 cases in Pakistan using an exponentiated version of the M family of distributions, Mathematics 8 (2020), 953. [13] M. Alizadeh, H. M. Yousof, A. Z. Afify, G. M. Cordeiro and M. Mansoor, The complementary generalized transmuted Poisson-G family of distributions, Austrian J. Stat. 47 (2018), 60-80. [14] A. Algarni, A. M. Almarashi, I. Elbatal, A. S. Hassan, E. M. Almetwally, A. M. Daghistani and M. Elgarhy, Type I half logistic Burr X-G family: properties, Bayesian, and non-Bayesian estimation under censored samples and applications to COVID-19 data, Math. Probl. Eng. Volume 2021, Article ID 5461130. https://doi.org/10.1155/2021/5461130. [15] M. Alizadeh, S. Tahmasebi and H. Haghbin, The exponentiated odd log-logistic family of distributions: properties and applications, J. Stat. Model Theory Appl. 1 (2018), 1-24. [16] N. Alotaibi, I. Elbatal, E. M. Almetwally, S. A. Alyami, A. S. Al-Moisheer and M. Elgarhy, Truncated Cauchy power Weibull-G class of distributions: Bayesian and non-Bayesian inference modelling for COVID-19 and carbon fiber data, Mathematics 10 (2022), 1565. [17] M. M. Badr, I. Elbatal, F. Jamal, C. Chesneau and M. Elgarhy, The transmuted odd Fréchet-G family of distributions: theory and applications, Mathematics 8 (2020), 958. [18] G. M. Cordeiro, E. M. M. Ortega, B. V. Popovíc and R. R. Pescim, The Lomax generator of distributions: properties, minification process and regression model, Appl. Math. Comput. 247 (2014), 465-486. [19] Z. Ahmad, M. Elgarhy, G. G. Hamedani and N. Sh. Butt, Odd generalized N-H generated family of distributions with application to exponential model, Pakistan Journal of Statistics and Operation Research 16(1) (2020), 53-71. [20] S. T. Dara and M. Ahmad, Recent Advances in Moment Distribution and their Hazard Rates, Lap Lambert Academic Publishing GmbH KG, 2012. [21] A. Rényi, On measures of entropy and information, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Contributions to the Theory of Statistics, Statistical Laboratory of the University of California: Berkeley, CA, USA, Vol. 1, 1960, p. 767. [22] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Statist. Phys. 52 (1988), 479-487. [23] J. Havrda and F. Charvat, Quantification method of classification processes, concept of structural a-entropy, Kybernetika 3 (1967), 30-35. [24] S. Arimoto, Information-theoretical considerations on estimation problems, Inf. Cont. 19 (1971), 181-194. [25] K. V. P. Barco, J. Mazucheli and V. Janeiro, The inverse power Lindley distribution, Comm. Statist. Simulation Comput. 46(8) (2016), 6308-6323. [26] P. Kumaraswamy, A generalized probability density function for double-bounded random processes, Journal of Hydrology 46 (1980), 79-88. [27] A. K. Gupta and S. Nadarajah, Handbook of Beta Distribution and its Applications, CRC Press, 2004. [28] E. S. A. El-Sherpieny and M. A. Ahmed, On the Kumaraswamy Kumaraswamy distribution, International Journal of Basic and Applied Sciences 3(4) (2014), 372. [29] V. K. Sharma, S. K. Singh, U. Singh and V. Agiwal, The inverse Lindley distribution: a stress strength reliability model with application to head and neck cancer data, Journal of Industrial and Production Engineering 32(3) (2015), 162-173. [30] D. V. Lindley, Fiducial distributions and Bayes’ theorem, J. Roy. Statist. Soc. Ser. B 20 (1958), 102-107. [31] C. T. Lin, B. S. Duran and T. O. Lewis, Inverted gamma as life distribution, Microelectron Reliability 29(4) (1989), 619-626. [32] A. A. H. Ahmadini, Statistical inference of sine inverse Rayleigh distribution, Comput. Syst. Sci. Eng. 41(1) (2022), 405-414. [33] J. P. Klein and M. L. Moeschberger, Survival Analysis: Techniques for Censored and Truncated Data, Springer, Berlin/Heidelberg, Germany, 2006.
|