Keywords and phrases: ansatz method, differential-difference equation, pantograph, exact solution.
Received: November 2, 2022; Accepted: December 14, 2022; Published: December 29, 2022
How to cite this article: Weam G. Alharbi, Solution of a differential-difference equation via an ansatz method, Advances and Applications in Discrete Mathematics 36 (2023), 55-68. http://dx.doi.org/10.17654/0974165823004
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] H. I. Andrews, Third paper: calculating the behaviour of an overhead catenary system for railway electrification, Proc. Inst. Mech. Eng. 179 (1964), 809-846. [2] M. R. Abbott, Numerical method for calculating the dynamic behaviour of a trolley wire overhead contact system for electric railways, Comput. J. 13 (1970), 363-368. [3] G. Gilbert and H. E. H. Davtcs, Pantograph motion on a nearly uniform railway overhead line, Proc. Inst. Electr. Eng. 113 (1966), 485-492. [4] P. M. Caine and P. R. Scott, Single-wire railway overhead system, Proc. Inst. Electr. Eng. 116 (1969), 1217-1221. [5] J. Ockendon and A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 322 (1971), 447 468. [6] L. Fox, D. Mayers, J. R. Ockendon and A. B. Tayler, On a functional differential equation, IMA J. Appl. Math. 8 (1971), 271-307. [7] T. Kato and J. B. McLeod, The functional-differential equation Bull. Am. Math. Soc. 77 (1971), 891-935. [8] A. Iserles, On the generalized pantograph functional-differential equation, Eur. J. Appl. Math. 4 (1993), 1-38. [9] V. A. Ambartsumian, On the fluctuation of the brightness of the milky way, Doklady Akad Nauk USSR 44 (1994), 223-226. [10] J. Patade and S. Bhalekar, On analytical solution of Ambartsumian equation, Natl. Acad. Sci. Lett. 40 (2017), 291-293. DOI 10.1007/s40009-017-0565-2. [11] F. M. Alharbi and A. Ebaid, New analytic solution for Ambartsumian equation, Journal of Mathematics and System Science 8 (2018), 182-186. DOI: 10.17265/2159-5291/2018.07.002 [12] H. O. Bakodah and A. Ebaid, Exact solution of Ambartsumian delay differential equation and comparison with Daftardar-Gejji and Jafari approximate method, Mathematics 6 (2018), 331. [13] N. O. Alatawi and A. Ebaid, Solving a delay differential equation by two direct approaches, Journal of Mathematics and System Science 9 (2019), 54-56. DOI: 10.17265/2159-5291/2019.02.003 [14] A. Ebaid, A. Al-Enazi, B. Z. Albalawi and M. D. Aljoufi, Accurate approximate solution of Ambartsumian delay differential equation via decomposition method, Math. Comput. Appl. 24(1) (2019), 7. [15] A. A. Alatawi, M. Aljoufi, F. M. Alharbi and A. Ebaid, Investigation of the surface brightness model in the Milky Way via homotopy perturbation method, J. Appl. Math. Phys. 8(3) (2020), 434-442. [16] E. A. Algehyne, E. R. El-Zahar, F. M. Alharbi and A. Ebaid, Development of analytical solution for a generalized Ambartsumian equation, AIMS Mathematics 5(1) (2019), 249-258. DOI: 10.3934/math.2020016 [17] S. M. Khaled, E. R. El-Zahar and A. Ebaid, Solution of Ambartsumian delay differential equation with conformable derivative, Mathematics 7 (2019), 425. [18] D. Kumar, J. Singh, D. Baleanu and S. Rathore, Analysis of a fractional model of the Ambartsumian equation, Eur. Phys. J. Plus 133 (2018), 133-259. [19] A. Ebaid, C. Cattani, A. S. Al Juhani and E. R. El-Zahar, A novel exact solution for the fractional Ambartsumian equation, Adv. Differ. Equ. 2021, Paper No. 88, 18 pp. https://doi.org/10.1186/s13662-021-03235-w. [20] W. Li and Y. Pang, Application of Adomian decomposition method to nonlinear systems, Adv. Differ. Equ. 2020, Paper No. 67, 17 pp. https://doi.org/10.1186/s13662-020-2529-y. [21] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Acad., Boston, MA, USA, 1994. [22] A. M. Wazwaz, Adomian decomposition method for a reliable treatment of the Bratu-type equations, Appl. Math. Comput. 166 (2005), 652-663. [23] A. Ebaid, Approximate analytical solution of a nonlinear boundary value problem and its application in fluid mechanics, Z. Naturforschung A 66 (2011), 423-426. [24] J. S. Duan and R. Rach, A new modification of the Adomian decomposition method for solving boundary value problems for higher order nonlinear differential equations, Appl. Math. Comput. 218 (2011), 4090-4118. [25] A. Ebaid, A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method, J. Comput. Appl. Math. 235 (2011), 1914-1924. [26] E. H. Aly, A. Ebaid and R. Rach, Advances in the Adomian decomposition method for solving two-point nonlinear boundary value problems with Neumann boundary conditions, Comput. Math. Appl. 63 (2012), 1056-1065. [27] C. Chun, A. Ebaid, M. Lee and E. H. Aly, An approach for solving singular two point boundary value problems: analytical and numerical treatment, ANZIAM J. 53 (2012), 21-43. [28] A. Ebaid, M. D. Aljoufi and A.-M. Wazwaz, An advanced study on the solution of nanofluid flow problems via Adomian’s method, Appl. Math. Lett. 46 (2015), 117-122. [29] A. Ebaid, Analytical solutions for the mathematical model describing the formation of liver zones via Adomian’s method, Computational and Mathematical Methods in Medicine, Volume 2013, Article ID 547954, 8 pages. [30] A. Ebaid and N. Al-Armani, A new approach for a class of the blasius problem via a transformation and Adomian’s method, Abstract and Applied Analysis, Volume 2013, Article ID 753049, 8 pages. [31] A. Alshaery and A. Ebaid, Accurate analytical periodic solution of the elliptical Kepler equation using the Adomian decomposition method, Acta Astronautica 140 (2017), 27-33. [32] H. O. Bakodah and A. Ebaid, The Adomian decomposition method for the slip flow and heat transfer of nanofluids over a stretching/shrinking sheet, Rom. Rep. Phys. 70 (2018), 115. [33] A. Ebaid, Remarks on the homotopy perturbation method for the peristaltic flow of Jeffrey fluid with nano-particles in an asymmetric channel, Comput. Math. Appl. 68(3) (2014), 77-85. [34] Z. Ayati and J. Biazar, On the convergence of homotopy perturbation method, J. Egypt. Math. Soc. 23 (2015), 424-428. [35] A. Ebaid, A. F. Aljohani, E. H. Aly, Homotopy perturbation method for peristaltic motion of gold-blood nanofluid with heat source, International Journal of Numerical Methods for Heat & Fluid Flow 30(6) (2020), 3121-3138. https://doi.org/10.1108/HFF-11-2018-0655 [36] A. Ebaid and H. K. Al-Jeaid, On the exact solution of the functional differential equation Advances in Differential Equations and Control Processes 26 (2022), 39-49.
|