Keywords and phrases: Mycielski’s graph, equitable coloring, equitable chromatic number, equitable chromatic threshold.
Received: September 28, 2022; Accepted: November 15, 2022; Published: December 16, 2022
How to cite this article: Loura Jency and Benedict Michael Raj, A study on equitable chromatic and threshold of Mycielskian of graphs, Advances and Applications in Discrete Mathematics 36 (2023), 35-54. http://dx.doi.org/10.17654/0974165823003
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] Jonathan L. Gross, Jay Yellen and Ping Zhang, Handbook of Graph Theory, Discrete Mathematics and its Applications, CRC Press, New York, 2014. [2] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Springer Verlag, New York, 2000. [3] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, MacMillan, London, UK, 1976. [4] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., USA, 1969. [5] J. Vernold Vivin and K. Kalai Raj, Equitable coloring of Mycielskian of some graphs, Journal of Mathematical Extension 11(3) (2017), 1-18. [6] J. Clark and D. A. Holton, A First Look at Graph Theory, World Scientific, 1995. [7] K. Kaliraj, On equitable coloring of Graphs, Ph.D. Thesis, Anna University, Chennai, 2013. [8] V. Kowsalya and J. Vernold Vivin, A note on acyclic coloring of sunlet graph families, International J. Math. Combin. 1 (2017), 135-138. [9] S. K. Vaidya and Rakhimol V. Issac, Equitable coloring of some path related graphs, IOSR Journal of Mathematics 12(5) Ver. VIII (2016), 65-69. [10] W. Meyer, Equitable coloring, Amer. Math. Monthly 80 (1973), 920-922. [11] Wu-Hsiung Lih and Gerard J. Chang, Equitable coloring of Cartesian products of graphs, Discrete Appl. Math. 160 (2012), 239-247. [12] K. W. Lih, The equitable coloring of graphs, D. Z. Du and P. M. Pardalos, eds., Handbook of Combinatorial Optimization, Kluwer, Dordrecht, Vol. 3, 1998, pp. 543-566. [13] Bharati Rajan, Indra Rajasingh and D. Francis Xavier, Harmonious coloring of honeycomb networks, J. Comp. & Math. Sci. 2(6) (2011), 882-887. [14] P. Erdős, Problem 9, Theory of Graphs and its Application, M. Fielder, ed., Vol. 159, Czech. Acad. Sci. Publ., Prague, 1964. [15] A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdős, P. Erdős, A. Rényi and V. T. Sós, eds., Combinatorial Theory and Applications, North-Holland, London, 1970, pp. 601-623. [16] H. A. Kiersted and A. V. Kostochka, A short proof of the Hajnal-Szemerédi theorem on equitable coloring, Combin. Probab. Comput. 17(2) (2008), 265-270. [17] B. L. Chen and K. W. Lih, Equitable coloring of trees, J. Combin. Theory Ser. B 61(1) (1994), 83-87. [18] H. Furmacńzyk and M. Kubale, The complexity of equitable vertex coloring of graphs, Journal of Applied Computer Science 13(2) (2005), 95-107. [19] H. L. Bodlaender and F. V. Fomin, Equitable colorings of bounded treewidth graphs, Theoret. Comput. Sci. 349(1) (2005), 22-30. [20] K.-W. Lih and P.-L. Wu, On equitable coloring of bipartite graphs, Discrete Math. 151(1-3) (1996), 155-160. [21] H. P. Yap and Y. Zhang, The equitable -coloring conjecture holds for outerplanar graphs, Bull. Inst. Math. Acad. Sinica 25 (1997), 143-149. [22] H. P. Yap and Y. Zhang, Equitable colorings of planar graphs, J. Combin. Math. Combin. Comput. 27 (1998), 97-105. [23] W. Wang and K. Zhang, Equitable colorings of line graphs and complete r-partite graphs, Systems Science and Mathematical Sciences 13 (2000), 190-194. [24] S. Nada, A. Elrokh, E. A. Elsakhawi and D. E. Sabra, The corona between cycles and paths, J. Egyptian Math. Soc. 25 (2017), 111-118.
|