Keywords and phrases: integrity, domination integrity, total domination integrity, wheel, helm, closed helm, flower graph, generalized web graph
Received: October 28, 2022; Revised: December 17, 2022; Accepted: January 9, 2023; Published: January 25, 2023
How to cite this article: N. H. Shah and P. L. Vihol, Total domination integrity of wheel related graphs, Advances and Applications in Discrete Mathematics 37 (2023), 21-36. http://dx.doi.org/10.17654/0974165823009
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. Beşirik, Total domination integrity of graphs, Journal of Modern Technology and Engineering 4(1) (2019), 11-19. [2] A. Beşirik and E. Kilic, Domination integrity of some graph classes, RAIRO Oper. Res. 53(5) (2019), 1721-1728. https://doi.org/10.1051/ro/2018074 [3] K. S. Bagga, L. W. Beineke, W. D. Goddard, M. J. Lipman and R. E. Pippert, A survey of integrity, Discrete Appl. Math. 37/38 (1992), 13-28. [4] C. A. Barefoot, R. Entringer and H. Swart, Vulnerability in graphs - a comparative survey, J. Combin. Math. Combin. Comput. 1 (1987), 13-22. [5] C. A. Barefoot, R. Entringer and H. Swart, Integrity of trees and power of cycles, Congr. Numer. 58 (1987), 103-144. [6] B. Basavanagoud and S. Policepatil, Integrity of wheel related graphs, Punjab University Journal of Mathematics 53(5) (2021), 329-336. [7] E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, Total domination in graphs, Networks 10 (1980), 211-219. [8] F. Harary, Graph Theory, Addison-Wesley, Massachusetts, 1972. [9] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc., New York, 1998. [10] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998. [11] M. A. Henning, Recent results on total domination in graphs: a survey, Discrete Math. 309 (2009), 32-63. DOI:10.1016/j.disc.2007.12.044. [12] S. S. Mahde and V. Mathad, Domination integrity of line splitting graph and central graph of path, cycle and star graphs, Appl. Appl. Math. 11(1) (2016), 408 423. [13] R. Sundareswaran and V. Swaminathan, Domination integrity in graphs, Proceedings of International Conference on Mathematical and Experimental Physics, Prague, Narosa Publishing House, 2010, 46-57. [14] R. Sundareswaran and V. Swaminathan, Domination Integrity of Middle Graphs, Algebra, Graph Theory and their Applications, T. Tamizh Chelvam, S. Somasundaram and R. Kala, eds., Narosa Publishing House, 2010, 88-92. [15] R. Sundareswaran and V. Swaminathan, Domination integrity of powers of cycles, International Journal of Mathematics Research 3(3) (2011), 257-265. [16] R. Sundareswaran and V. Swaminathan, Domination integrity in trees, Bulletin of International Mathematical Virtual Institute 2 (2012), 153-161. [17] R. Sundareswaran and V. Swaminathan, Integrity and domination integrity of gear graphs, TWMS J. Appl. Eng. Math. 6(1) (2016), 54-63. [18] S. K. Vaidya and N. J. Kothari, Some new results on domination integrity of graphs, Open Journal of Discrete Mathematics 2(3) (2012), 96-98. [19] S. K. Vaidya and N. J. Kothari, Domination integrity of splitting graph of path and cycle, ISRN Combinatorics Vol. 2013, Article ID 795427, 2013, 7 pages. [20] S. K. Vaidya and N. J. Kothari, Domination integrity of splitting and degree splitting graphs of some graphs, Advances and Applications in Discrete Mathematics 17(2) (2016), 185-199. [21] S. K. Vaidya and N. H. Shah, Domination integrity of shadow graphs, Advances in Domination Theory II, V. R. Kulli, ed., Vishwa International Publication, India, 2013, 19-31. [22] S. K. Vaidya and N. H. Shah, Domination integrity of total graphs, TWMS J. Appl. Eng. Math. 4(1) (2014), 117-126. [23] S. K. Vaidya and N. H. Shah, Domination integrity of some path related graphs, Appl. Appl. Math. 9(2) (2014), 780-794.
|