Keywords and phrases: moving grid, iterative finite volume method, Eulerian form, Lagrangian form, flux limiter.
Received: November 16, 2022; Accepted: January 5, 2023; Published: January 12, 2023
How to cite this article: Kassiénou LAMIEN, Mamadou OUÉDRAOGO, Moumini KERE, Bisso SALEY and Longin SOMÉ, Experimentation of a family of iterative finite volume methods with moving grid to solve a Richard’s problem, Advances and Applications in Discrete Mathematics 37 (2023), 1-20. http://dx.doi.org/10.17654/0974165823008
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] B. N. Azarenok, Variational barrier method of adaptive grid generation in hyperbolic problems of gas dynamics, SIAM J. Numer. Anal. (40) (2002), 651-682. [2] B. N. Azarenok and S. A. Ivanenko, Application of adaptive grids in numerical analysis of time-dependent problems in gas dynamics, Comput. Math. Math. Phys. (40) (2000), 1330-1349. [3] B. N. Azarenok, S. A. Ivanenko and T. Tang, Adaptive mesh redistribution method based on Godunov’s scheme, Comm. Math. Sci. (1) (2003), 152-179. [4] E. R. Benton and G. W. Platzman, A table of solutions of the One-dimensional Burgers equation, Quart. Appl. Math. (30) (1972), 195-212. [5] Miroslav Čada, Compact third-order limiter functions for finite volume methods, Ph. D. Thesis, Dipl. Geo Physiker, ludwig-Maximilians University, Munich, 2009. [6] A. van Dam, Moving meshes and solution monitoring for compressible flow simulation, Ph.D. Thesis, Mathematical Institute, Utrecht University, Netherlands, 2009. [7] R. M. Furzeland, J. G. Verwer and P. A. Zegeling, A numerical study of three moving-grid methods for one-dimensional partial differential equations which are based on the method of lines, Journal of Computational Physics (89) (1990), 349-388. [8] A. Harten and J. M. Hyman, Self-adjusting grid methods for one-dimensional hyperbolic conservation laws, J. Comput. Phys. (50) (1983), 235-269. [9] Weizhang Huang and Robert D. Russell, Adaptive Moving Mesh Methods, Springer, New York, XVII, 2011, p. 432. [10] W. Huang, L. Zheng and X. Zhan, Adaptive moving mesh methods for simulating one dimensional groundwater problems with sharp moving fronts, Int. J. Numer. Meth. Engrg. 54 (2002), 1579-1603. [11] J. Royer, Calcul différentiel et intégral : théorème de Poincaré - Formule de Green-Riemann, Université Toulouse 3, Toulouse, France, 2016, p. 88. [12] Randall J. Leveque, Nonlinear Conservation Laws and Finite Volumes Methods for Astrophysical Fluid Flow Springer-Verlag, 1998. [13] Randall J. Leveque, Finite volume Méthods for hyperbolic Problems Press Syndicate of the University of Cambridge, 2002. [14] J. A. Mackenzie, Moving mesh finite volume methods for one-dimensional evolutionary partial differential equation, Technical Report no. 96/32, Departement of mathematics, University of Strathclyde, 1996. [15] Sean McDonald, Development of a High-order Finite-volume Method for Unstructured Meshes, Master of Applied Science thesis, Graduate Department of Aerospace Engineering, University of Toronto, 2011. [16] Mamadou Ouedraogo, Longin Some and Kassiénou Lamien, Using some flux limiters methods to solve three test problems, Far East Journal of Applied Mathematics 93(2) (2015), 83-108. [17] Fredrik Svensson, Moving meshes and higher order finite volume reconstructions, International Journal on finite volumes, Institut de Mathématiques de Marseille, AMU, 3(1) (2006), 1-27. [18] Longin Some, Using an adaptive moving mesh lines method for numerical resolution of Partial Differential Equations modeling evolutionary phenomena, Ph. D. Thesis, Department of Mathematics, Ouaga 1 Pr Joseph KI-ZERBO University, Burkina Faso, 2007. [19] Huazhong Tang and Tao Tang, Adaptive mesh method for one- and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal. 41(2) (2003), 487-515.
|