Keywords and phrases: nonlinear fractional integro-differential equation of Fredholm, Laguerre approximation technique, Caputo fractional derivative, multivariate Newton method.
Received: December 15, 2022; Accepted: March 14, 2023; Published: April 15, 2023
How to cite this article: Djibet Mbainguessé, Bakari Abbo and Youssouf Paré, Solving nonlinear fractional integro-differential equation of Fredholm second kind by an approximation technique of Laguerre polynomials and Newton iteration method, Universal Journal of Mathematics and Mathematical Sciences 19(1) (2023), 1-19. http://dx.doi.org/10.17654/2277141723014
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. A. Kilbas, H. M. Srivasna and J. J. Trujillo, Theory and application of fractional differential equations Elsevier Science Limited, North-Holland Mathematics Studies, Vol. 204, 2006. [2] I. Podlubny, Factional Differential Equation, Academic Press, New York, 1999. [3] A. Dascioglu and D. V. Bayram, Solving fractional Fredholm integro-differential equations by Laguerre polynomials, Sains Malaysiana 48 (2019), 251-257. [4] Z. M. Odibat and Sh. Momani, An algorithm for the numerical solution of differential equation of fractional order, Journal of Applied Mathematics and Informatics 26 (2008), 15-27. [5] A. J. Jerri, Introduction to Integral Equation with Applications, John Wiley & Sons Inc., New York, 1999. [6] M. A. Rahma, M. S. Islam and M. M. Alam. Numerical solutions of Volterra integral equations using Laguerre polynomials, Journal of Scientific Research 4(2) (2012), 357-364. [7] M. Paripour and M. Kamyar, Numerical solution of nonlinear Volterra-Fredholm integral equations by using new basis functions, Commun. Numer. Anal. 2013, Art. ID cna-00170, 11 pp. [8] K. Maleknejad and M. T. Kajani, Solving integro-differential equations by using hybrid Legendre and block-pulse functions, Int. J. Appl. Math. 11(1) (2002), 67-76. [9] E. Babolian and A. Shasavaran, Numerical solution of nonlinear Fredholm integral equations of second kind using Haar wavelets, Appl. Math. Comput. 225 (2009), 87-95. [10] Z. Elahi, G. Akram and S. S. Siddiqi, Laguerre approach for solving system of linear Fredholm integro-differential equations, Math. Sci. (Springer) 12 (2018), 185-195. [11] A. Hamoud, N. Mohammed and K. Ghadle, Solving Fredholm integro-differential equations by using numerical techniques, Nonlinear Functional Analysis and Applications 24 (2019), 533-542. [12] A. Hamoud, N. Mohammed and K. Ghadle, A study of some effective techniques for solving Volterra-Fredholm integral equations, Mathematics Analysis 26 (2019), 389-406. [13] A. M. S Mahdy and R. T. Shwayya, Numerical solution of fractional integro-differential equations by least squares method and shifted Laguerre polynomials pseudo-spectral method, International Journal of Science and Engineering Research 7(4) (2016), 1589-1596. [14] G. Golub and J. H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23 (1969), 221-230. [15] G. Szegő, Orthogonal polynomials, Vol. 23 of Colloquium Publications, American Mathematical Society, 2000. [16] K. Adama, D. Mbainguesse, B. J. Yiyureboula, B. Abbo and Y. Paré, Analytical solution of some nonlinear fractional integro-differential equations of the Fredholm second kind by a new approximation technique of the numerical SBA methods, International Journal of Numerical Methods and Applications 21 (2022), 37-58. [17] K. Adama, B. J. Tiyureboula, D. Mbainguesse and Y. Paré, Analytical solutions of classical and fractional Navier-stock equations by the SBA method, Journal of Mathematics Research 14(4) (2022), 20-30.
|