Keywords and phrases: weakly regular cone, fixed point, contractive mappings, existence.
Received: September 29, 2022; Revised: October 19, 2022; Accepted: November 21, 2022; Published: April 14, 2023
How to cite this article: Yan Sun and Ravi P. Agarwal, Existence of fixed point for nonlinear operator in partially ordered metric spaces, Advances in Differential Equations and Control Processes 30(2) (2023), 97-116. http://dx.doi.org/10.17654/0974324323007
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] M. Abbas, T. Nazir and B. Rhoades, Fixed points of multivalued mapping satisfying ciric type contractive conditions in G-metric spaces, Hacettepe J. Math. Stat. 42(1) (2013), 21-29. [2] Ravi P. Agarwal, E. Karapinar and A.-F. Roldán-López-de-Hierro, Fixed point theorem in quasi-metric space and applications to multidimensional fixed point theorem on G-metric s-paces, J. Nonlinear Convex Anal. 16(9) (2015), 1787-1816. [3] Ravi P. Agarwal, E. Karapinar and D. O’Regan, Fixed point theory in metric type spaces, Springer Int. Publishing, 2016. [4] Ravi P. Agarwal and E. Karapinar, Remarks on some coupled fixed point theorems in G-metric spaces, Fixed Point Theory Appl. 2013(2) (2013), 1-33. [5] Ravi P. Agarwal, E. Karapinar, D. O’Regan and A.-F. Roldán-López-de-Hierro, Further fixed point results on G-metric spaces, Fixed Point Theory in Metric Type Spaces 2015 (2015), 107-173. [6] L. Ćirić and V. Lakshmikantham, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70(12) (2009), 4341-4349. [7] P. Charoensawan and C. Thangthong, On coupled coincidence point theorems on partially ordered G-metric spaces without mixed g-monotone, J. Inequalities Appl. 2014(150) (2014), 1-17. [8] B. S. Choudhury and P. Maity, Coupled fixed point results in generalized metric spaces, Math. Comput. Model. 54(1-2) (2011), 73-79. [9] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74-79. [10] Y. U. Gaba, An order theoretic approach in fixed point theory, Math. Sci. 8(3) (2014), 87-93. [11] Y. U. Gaba, Fixed point theorems in G-metric spaces, J. Math. Anal. Appl. 455 (2017), 528-537. [12] T. Gnana-Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65(7) (2006), 1379-1393. [13] N. Hussain, E. Karapinar, P. Salimi and P. Vetro, Fixed point results for -Meir-Keeler contractive and -Meir-Keeler contractive mappings, Fixed Point Theory Appl. 2013(1) (2013), 1-14. [14] J. Jachymski, Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl. 194(1) (1995), 293-303. [15] E. Karapinar and Ravi P. Agarwal, Further fixed point results on G-metric spaces, Fixed Point Theory Appl. 2013(154) (2013), 1-14. [16] E. Karapinar, B. Yildiz-Ulus and İ. M. Erhan, Cyclic contractions on G-metric spaces, Abstract Applied Anal. 2012(1) (2012), 1-15. Article ID 182947. DOI: 10.1155/2012/182947 [17] E. Karapinar, Billûr Kaymakcalan and K. Tas, On coupled fixed point theorems on partially ordered G-metric spaces, J. Inequalities Appl. 200 (2012), 1-13. DOI: 10.1186/1687-1812-2012-174 [18] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7(2) (2006), 289-297. [19] Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl. 2009(1) (2009), 1-10. DOI: 10.1155/2009/917175 [20] Z. Mustafa, F. Awawdeh and W. Shatanawi, Fixed point theorem for expansive mappings in G-metric spaces, Int. J. Contemp. Math. Sci. 5(50) (2010), 2463-2472. [21] Z. Mustafa and H. Obiedat, A fixed point theorem of Reich in G-metric spaces, Cubo A Math. J. 12(1) (2019), 83-93. DOI: 10.4067/S0719-06462010000100008 [22] Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory Appl. 2008(2) (2008), 1-12. DOI: 1155/2008/189870 [23] Z. Mustafa, M. Arshad, S. Khan, J. Ahmad and M. Jaradat, Common fixed points for multivalued mappings in G-metric spaces with applications, J. Nonlinear Sci. Appl. 10(5) (2017), 2550-2564. DOI: 10.22436/jnsa.010.05.23 [24] Z. Mustafa, Z. M. Khandagji and W. Shatanawi, Fixed point results on complete G-metric spaces, Studia Scientiarum Mathematicarum Hungarica 48(3) (2011), 304-319. DOI: 10.1556/SScMath.48.2011.3.1170 [25] Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point results in G-metric spaces, Int. J. Math. Sci. 2009 (2009), 1-10. DOI: 10.1155/2009/283028 [26] O. Popescu, A new type of contractive multivalued operators, Bull. Sci. Math. 137 (2013), 30-44. [27] B. Samet, C. Vetro and F. Vetro, Remarks on G-metric spaces, Int. J. Anal. 2013 (2013), 1-6. DOI: 10.1155/2013/917158 [28] Y. Sun and Chenglin Zhao, Fixed point results for multi-valued mappings in G-metric spaces, Dynamic Systems Appl. 30(9) (2021), 1463-1478. [29] N. Tahat, H. Aydi, E. Karapinar and W. Shatanawi, Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces, Fixed Point Theory Appl. 2012 (2012), 1-9.
|