Keywords and phrases: mathematical model, computational and stability analysis, COVID-19, Galerkin technique.
Received: February 4, 2023; Accepted: March 14, 2023; Published: April 11, 2023
How to cite this article: Mdi Begum Jeelani, Stability and computational analysis of COVID-19 using a higher order Galerkin time discretization scheme, Advances and Applications in Statistics 86(2) (2023), 167-206. http://dx.doi.org/10.17654/0972361723022
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] R. M. Anderson and R. M. May, Helminth infections of humans: mathematical models, population dynamics, and control, Advances in Parasitology, Elsevier, Vol. 24, 1985, pp. 1-101. [2] N. T. Bailey, B. Sendov and R. Tsanev, Mathematical models in biology and medicine, IFIP-TC4 Working Conference on Mathematical Models in Biology and Medicine (1972: Varna, Bulgaria), North-Holland Pub. Co., 1974. [3] D. Dourado-Neto, D. Teruel, K. Reichardt, D. Nielsen, J. Frizzone and O. Bacchi, Principles of crop modeling and simulation: I. Uses of mathematical models in agricultural science, Sci. Agricola. 55 (1998), 46-50. [4] L. Edelstein-Keshet, Mathematical Models in Biology, SIAM, 2005. [5] Attaullah, R. Jan and Ş. Yüzbaşı, Dynamical behaviour of HIV infection with the influence of variable source term through Galerkin method, Chaos Solitons Fractals 152 (2021), 111429. [6] Attaullah and M. Sohaib, Mathematical modeling and numerical simulation of HIV infection model, Results in Applied Mathematics 7 (2020), 100118. [7] H. A. Rothana and S. N. Byrareddy, The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak, J. Autoimmun. 109 (2020), 102433. [8] H. Lu, Drug treatment options for the 2019-new coronavirus (2019-nCoV), Biosci. Trends 14 (2020), 69-71. https://doi.org/10.5582/bst.2020.01020. [9] M. Bassetti, A. Vena and D. R. Giacobbe, The novel Chinese coronavirus (2019-nCoV) infections: challenges for fighting the storm, Eur. J. Clin. Invest. 50(3) (2020), e13209. [10] D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C. L. Hsieh, O. Abiona, B. S. Graham and J. S. McLellan, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science 367(6483) (2020), 1260-1263. [11] J. Cao, W. J. Tu, W. Chang, L. Yu, Y. K. Liu, X. Hu and Q. Liu, Clinical features and short-term outcomes of 102 patients with coronavirus disease 2019 in Wuhan, China, Clinical Infectious Diseases 71(15) (2020), 748-755. [12] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu and P. Niu, A novel coronavirus from patients with pneumonia in China, 2019, New England J. Med. 382 (2020), 727-733. [13] L. Li, C. Sun and J. Jia, Optimal control of a delayed SIRC epidemic model with saturated incidence rate, Optim. Control Appl. Met. 40(2) (2018), 367-374. [14] B. Acay, M. Inc, A. Khan and A. Yusuf, Fractional methicillin-resistant Staphylococcus aureus infection model under Caputo operator, J. Appl. Math. Comput. 67(1-2) (2021), 755-783. https://doi.org/10.1007/s12190-021-01502-3. [15] J. Lin, R. Xu and X. Tian, Global dynamics of an age-structured cholera model with both human-to-human and environment-to-human transmissions and saturation incidence, Appl. Math. Model. 63 (2018), 688-708. [16] A. Yusuf, B. Acay, U. T. Mustapha, M. Inc and D. Baleanu, Mathematical modeling of pine wilt disease with Caputo fractional operator, Chaos Solitons Fractals 143 (2021), 110569. [17] I. Ahmed, E. F. D. Goufo, A. Yusuf, P. Kumam, P. Chaipanya and K. Nonlaopon, An epidemic prediction from analysis of a combined HIV-COVID-19 co-infection model via ABC fractional operator, Alexand Eng. J. 60 (2021), 2979-2995. [18] S. Kirtphaiboon, U. Humphries, A. Khan and A. Yusuf, Model of rice blast disease under tropical climate conditions, Chaos Solitons Fractals 143 (2021), 110530. [19] S. S. Musa, S. Qureshi, S. Zhao, A. Yusuf, U. T. Mustapha and D. He, Mathematical modeling of COVID-19 epidemic with effect of awareness programs, Infect Disease Model 6 (2021), 448-460. [20] B. F. Maier and D. Brockmann, Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China, Science 8 (2020). https://doi.org/10.1126/science.abb4557 [21] F. Ndaïrou, I. Area, J. J. Nieto and D. F. M. Torres, Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan, Chaos Solitons Fractals 135 (2020), 109846. https://doi.org/10.1016/j.chaos.2020.109846. [22] C. Yang and J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan, China, Math. Biosci. Eng. 17(3) (2020), 2708-2724. [23] Y. Fang, Y. Nie and M. Penny, Transmission dynamics of the covid-19 outbreak and effectiveness of government interventions: a data-driven analysis, J. Med. Virol. 2 (2020), 6-21. [24] X. Rong, L. Yang, H. Chu and M. Fan, Effect of delay in diagnosis on transmission of COVID-19, Math. Biosci. Eng. 17(3) (2020), 2725-2740. [25] K. Mizumoto and G. Chowell, Estimating risk for death from coronavirus disease, China, January-February 2020, Emerg. Infect. Diseases 26(6) (2020), 1251-1256. [26] J. Hellewell, S. Abbott, A. Gimma, N. I. Bosse, C. I. Jarvis, T. W. Russell, J. D. Munday, A. J. Kucharski, W. J. Edmunds, F. Sun and S. Flasche, Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts, The Lancet Global Health 8(4) (2020), 488-496. [27] M. J. Attaullah, S. Alyobi, M. F. Yassen and W. Weera, A higher order Galerkin time discretization scheme for the novel mathematical model of COVID-19, AIMS Mathematics 8(2) (2023), 3763-3790. [28] P. Pandey, J. F. Gómez-Aguilar, M. K. Kaabar, Z. Siri and A. M. Abd Allah, Mathematical modeling of COVID-19 pandemic in India using Caputo-Fabrizio fractional derivative, Computers in Biology and Medicine 145 (2022), 105518. [29] I. Ahmed, G. U. Modu, A. Yusuf, P. Kumam and I. Yusuf, A mathematical model of Coronavirus disease (COVID-19) containing asymptomatic and symptomatic classes, Results in Physics 21 (2021), 103776. [30] A. Zeb, E. Alzahrani, V. S. Erturk and G. Zaman, Mathematical model for coronavirus disease 2019 (COVID-19) containing isolation class, BioMed Research International (2020), 1-7. [31] J. K. Ghosh, S. K. Biswas, S. Sarkar and U. Ghosh, Mathematical modelling of COVID-19: A case study of Italy, Math. Comput. Simulation 194 (2022), 1-18. [32] I. H. K. Premarathna, H. M. Srivastava, Z. A. M. S. Juman, A. AlArjani, M. S. Uddin and S. S. Sana, Mathematical modeling approach to predict COVID-19 infected people in Sri Lanka, AIMS Mathematics (2022), 4672-4699. [33] A. S. Shaikh, I. N. Shaikh and K. S. Nisar, A mathematical model of COVID-19 using fractional derivative: outbreak in India with dynamics of transmission and control, Advances in Difference Equations 2020(1) (2020), 1-19. [34] N. H. Tuan, V. V. Tri and D. Baleanu, Analysis of the fractional corona virus pandemic via deterministic modeling, Math. Methods Appl. Sci. 44(1) (2021), 1086-1102. [35] X. Rong, H. Chu, L. Yang, S. Tan, C. Yang, P. Yuan, Y. Tan, L. Zhou, Y. Liu, Q. Zhen and S. Wang, Recursive Zero-COVID model and quantitation of control efforts of the Omicron epidemic in Jilin province, Infectious Disease Modelling 8(1) (2023), 11-26. [36] L. Kalachev, E. L. Landguth and J. Graham, Revisiting classical SIR modelling in light of the COVID-19 pandemic, Infectious Disease Modelling 8(1) (2023), 72 83. [37] B. Yu, Q. Li, J. Chen and D. He, The impact of COVID-19 vaccination campaign in Hong Kong SAR China and Singapore, Infectious Disease Modelling (2022), 101-106. [38] V. P. Bajiya, S. Bugalia and J. P. Tripathi, Mathematical modeling of COVID-19: Impact of non-pharmaceutical interventions in India, Chaos: J. Nonlinear Sci. 30(11) (2020), 113143. http://dx.doi.org/10.1063/5.0021353. [39] S. Ullah and M. A. Khan, Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study, Chaos Solitons Fractals 139 (2020), 110075. http://dx.doi.org/10.1016/j.chaos.2020.110075. [40] S. Olaniyi, O. S. Obabiyi, K. O. Okosun, A. T. Oladipo and S. O. Adewale, Mathematical modelling and optimal cost-effective control of COVID-19 transmission dynamics, Eur. Phys. J. Plus. 135(11) (2020), 1-20. http://dx.doi.org/10.1140/epjp/s13360-20-00954-z. [41] W. Ming, J. V. Huang and C. J. P. Zhang, Breaking down of the healthcare system: mathematical modelling for controlling the novel coronavirus (2019-nCoV) outbreak in Wuhan, China, medRxiv and bioRxiv, 2020. [42] I. Nesteruk, Statistics-based predictions of coronavirus epidemic spreading in Mainland China, Innovative Biosystems and Bioengineering 4(1) (2020), 13-18. [43] M. Batista, Estimation of the final size of the coronavirus epidemic by SIR model, Research Gate, 2020. [44] V. A. Okhuese, Mathematical predictions for coronavirus as a global pandemic, Research Gate, 2020. [45] S. Hussain, F. Schieweck and S. Turek, Higher order Galerkin time discretizations and fast multigrid solvers for the heat equation, J. Numer. Math. 19(1) (2011), 41 61. [46] S. Hussain, F. Schieweck and S. Turek, A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary stokes equations, Open Numer. Methods J. 4(1) (2012), 35-45. [47] O. Diekmann, J. A. Heesterbeek and M. G. Roberts, The construction of next generation matrices for compartmental epidemic models, J. R. Soc. Interface 7(47) (2010), 873-885. [48] P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), 29-48. http://dx.doi.org/10.1016/S0025-5564(02)00108-6. [49] L. J. Allen, An Introduction to Mathematical Biology, Pearson/Prentice Hall, 2007. [50] C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng. 1(2) (2004), 361.
|