Keywords and phrases: non-negative curvature, Busemann concave, Berwald metric.
Received: March 2, 2023; Accepted: March 28, 2023; Published: April 4, 2023
How to cite this article: Chang-Wan Kim, Rigidity of a Finsler metric with Busemann concavity, JP Journal of Geometry and Topology 29(1) (2023), 19-28. http://dx.doi.org/10.17654/0972415X23002
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] N. Boonnam, R. Hama and S. V. Sabau, Berwald spaces of bounded curvature are Riemannian, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 33 (2018), 339-347. [2] H. Busemann, Spaces with non-positive curvature, Acta Math. 80 (1948), 259-310. [3] S.-S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientific, 2005. [4] S. Ivanov and A. Lytchak, Rigidity of Busemann convex Finsler metrics, Comment. Math. Helv. 94 (2019), 855-868. [5] E. Kann, Bonnet’s theorem in two-dimensional G-spaces, Comm. Pure Appl. Math. 14 (1961), 765-784. [6] M. Kell, Sectional curvature-type conditions on metric spaces, J. Geom. Anal. 29 (2019), 616-655. [7] P. Kelly and E. Straus, Curvature in Hilbert geometries, Pacific. J. Math. 8 (1958), 119-125. [8] A. Kristály and L. Kozma, Metric characterization of Berwald spaces of non-positive flag curvature, J. Geom. Phys. 56 (2006), 1257-1270. [9] N. Lebedeva, S.-I. Ohta and V. Zolotov, Self-contracted curves in spaces with weak lower curvature bound, Int. Math. Res. Not. 11 (2021), 8623-8656. [10] V. S. Matveev and M. Troyanov, The Binet-Legendre metric in Finsler geometry, Geom. Topol. 16 (2012), 2135-2170. [11] S.-I. Ohta, Uniform convexity and smoothness, and their applications in Finsler geometry, Math. Ann. 343 (2008), 669-699. [12] Z. I. Szabó, Positive definite Berwald spaces, Tensor (N.S.) 35 (1981), 25-39. [13] Z. I. Szabó, Berwald metrics constructed by Chevalley’s polynomials, 2006. Preprint, available at arXiv:math/0601522.
|