Keywords and phrases: Casson nanofluid, viscous dissipation, chemical reaction, radiation, porous media, suction/injection.
Received: January 7, 2023; Revised: January 23, 2023; Accepted: March 1, 2023; Published: March 20, 2023
How to cite this article: V. Sujatha, W. Sridhar, G. R. Ganesh and J. Peter Praveen, MHD radiative Casson nanofluid flow over a permeable plate with chemical reaction and zero nanoparticle flux, JP Journal of Heat and Mass Transfer 32 (2023), 95-120. http://dx.doi.org/10.17654/0973576323018
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] J. Buongiorno, Convective transport in nanofluids, Journal of Heat Transfer 128(3) (2006), 240-250. https://doi.org/10.1115/1.2150834. [2] R. Prasher, D. Song, J. Wang and P. Phelan, Measurements of nanofluid viscosity and its implications for thermal applications, Appl. Phys. Lett. 89(13) (2006), 133108. [3] S. Pil Jang and S. U. Choi, Effects of various parameters on nanofluid thermal conductivity, Journal of Heat Transfer 129(5) (2007), 617-623. https://doi.org/10.1115/1.2712475. [4] W. Yu, D. M. France, J. L. Routbort and S. U. Choi, Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer Engineering 29(5) (2008), 432-460. [5] S. U. Choi, Nanofluids: from vision to reality through research, Journal of Heat Transfer 131(3) (2009), 033106, 9 pp. https://doi.org/10.1115/1.3056479. [6] A. Ijam and R. Saidur, Nanofluid as a coolant for electronic devices (cooling of electronic devices), Applied Thermal Engineering 32 (2012), 76-82. [7] M. Mustafa and J. A. Khan, Model for flow of Casson nanofluid past a non-linearly stretching sheet considering magnetic field effects, AIP Advances 5(7) (2015), 077148. [8] M. Y. Malik, M. Naseer, S. Nadeem and A. Rehman, The boundary layer flow of Casson nanofluid over a vertical exponentially stretching cylinder, Applied Nanoscience 4(7) (2014), 869-873. [9] J. Qing, M. M. Bhatti, M. A. Abbas, M. M. Rashidi and M. E. S. Ali, Entropy generation on MHD Casson nanofluid flow over a porous stretching/shrinking surface, Entropy 18(4) (2016), 123. [10] R. U. Haq, S. Nadeem, Z. H. Khan and T. G. Okedayo, Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet, Central European Journal of Physics 12(12) (2014), 862-871. [11] I. S. Oyelakin, S. Mondal and P. Sibanda, Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions, Alexandria Engineering Journal 55(2) (2016), 1025-1035. [12] S. S. Ghadikolaei, K. Hosseinzadeh, D. D. Ganji and B. Jafari, Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet, Case Studies in Thermal Engineering 12 (2018), 176-187. [13] A. A. Kendoush, Theoretical analysis of heat and mass transfer to fluids flowing across a flat plate, International Journal of Thermal Sciences 48(1) (2009), 188-194. [14] J. Lahjomri and A. Oubarra, Hydrodynamic and thermal characteristics of laminar slip flow over a horizontal isothermal flat plate, Journal of Heat Transfer 135(2) (2013), 021704, 9 pp. https://doi.org/10.1115/1.4007412. [15] L. Deswita, R. Nazar, A. Ishak, R. Ahmad and I. Pop, Similarity solutions for mixed convection boundary layer flow over a permeable horizontal flat plate, Appl. Math. Comput. 217(6) (2010), 2619-2630. [16] A. Pantokratoras, Natural convection along a vertical isothermal plate with linear and non-linear Rosseland thermal radiation, International Journal of Thermal Sciences 84 (2014), 151-157. [17] M. Das, R. Mahato and R. Nandkeolyar, Newtonian heating effect on unsteady hydromagnetic Casson fluid flow past a flat plate with heat and mass transfer, Alexandria Engineering Journal 54(4) (2015), 871-879. [18] Sri Sathya Sai S.V., Rahul Ranganath, Shane Shaju, T. R. Seetharam and K. N. Seetharamu, Numerical predictions of forced convection and free convection heat transfer from an isothermal horizontal flat plate to supercritical nitrogen, Thermal Science and Engineering Progress 23 (2021), 100867. https://doi.org/10.1016/j.tsep.2021.100867. [19] A. N. A. Osman, S. M. Abo-Dahab and R. A. Mohamed, Analytical solution of thermal radiation and chemical reaction effects on unsteady MHD convection through porous media with heat source/sink, Mathematical Problems in Engineering 2011 (2011), 205181, 18 pp. https://doi.org/10.1115/2011/205181. [20] S. Sivasankaran, H. Niranjan and M. Bhuvaneswari, Chemical reaction, radiation and slip effects on MHD mixed convection stagnation-point flow in a porous medium with convective boundary condition, International Journal of Numerical Methods for Heat and Fluid Flow 27(2) (2017), 454-470. https://doi.org/10.1108/HFF-02-2016-0044. [21] J. R. Reddy, V. Sugunamma, N. Sandeep and C. Sulochana, Influence of chemical reaction, radiation and rotation on MHD nanofluid flow past a permeable flat plate in porous medium, Journal of the Nigerian Mathematical Society 35(1) (2016), 48-65. [22] C. Zhang, L. Zheng, X. Zhang and G. Chen, MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction, Applied Mathematical Modelling 39(1) (2015), 165-181. [23] L. Ramamohan Reddy, M. C. Raju, G. S. S. Raju and S. M. Ibrahim, Chemical reaction and thermal radiation effects on MHD micropolar fluid past a stretching sheet embedded in a non-Darcian porous medium, Journal of Computational and Applied Research in Mechanical Engineering (JCARME) 6(2) (2017), 27-46. [24] L. Panigrahi, J. Panda, K. Swain and G. C. Dash, Heat and mass transfer of MHD Casson nanofluid flow through a porous medium past a stretching sheet with Newtonian heating and chemical reaction, Karbala Int. J. Mod. Sci. 6(3) (2020), Article no.: 11. doi:10.33640/2405-609X.1740. [25] M. Turkyilmazoglu, Buongiorno model in a nanofluid filled asymmetric channel fulfilling zero net particle flux at the walls, International Journal of Heat and Mass Transfer 126 (2018), 974-979. [26] N. S. Khashi’ie, N. Md. Arifin, R. Nazar, E. H. Hafidzuddin, N. Wahi and I. Pop, A stability analysis for magnetohydrodynamics stagnation point flow with zero nanoparticle flux condition and anisotropic slip, Energies 12(7) (2019), 1268. [27] A. Ishak, Similarity solutions for flow and heat transfer over a permeable surface with convective boundary condition, Appl. Math. Comput. 217 (2010), 837-842. https://doi.org/10.1016/j.amc.2010.06.026. [28] A. K. Gautam, A. K. Verma and K. Bhattacharyya, Soret and Dufour effects on MHD boundary layer flow of non-Newtonian Carreau fluid with mixed convective heat and mass transfer over a moving vertical plate, Pramana - J. Phys. 94 (2020), 108. https://doi.org/10.1007/s12043-020-01984-z. [29] T. Cebeci and P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer, Springer, New York, 1988. [30] S. Akbari, S. Faghiri, P. Poureslami, K. Hosseinzadeh and M. Behshad Shafii, Analytical solution of non-Fourier heat conduction in a 3-D hollow sphere under time-space varying boundary conditions, Heliyon 8(12) (2022), e12496. https://doi.org/10.1016/j.heliyon.2022.e12496. [31] S. Faghiri, S. Akbari, M. B. Shafii and Kh. Hosseinzadeh, Hydrothermal analysis of non-Newtonian fluid flow (blood) through the circular tube underprescribed non-uniform wall heat flux, Theoretical and Applied Mechanics Letters 12(4) (2022), 100360. https://doi.org/10.1016/j.taml.2022.100360. [32] M. M. Gulzar, A. Aslam, M. Waqas, M. A. Javed and Kh. Hosseinzadeh, A nonlinear mathematical analysis for magneto-hyperbolic-tangent liquid featuring simultaneous aspects of magnetic field, heat source and thermal stratification, Applied Nanoscience 10(12) (2020), 4513-4518. https://doi.org/10.1007/s13204-020-01483-y. [33] Kh. Hosseinzadeh, M. R. Mardani, M. Paikar, A. Hasibi, T. Tavangar, M. Nimafar, D. D. Ganji and M. B. Shafii, Investigation of second grade viscoelastic non-Newtonian nanofluid flow on the curve stretching surface in presence of MHD, Results in Engineering 17 (2023), 100838. https://doi.org/10.1016/j.rineng.2022.100838. [34] M. A. Attar, M. Roshani, Kh. Hosseinzadeh and D. D. Ganji, Analytical solution of fractional differential equations by Akbari-Ganji’s method, Partial Differential Equations in Applied Mathematics 6 (2022), 100450. https://doi.org/10.1016/j.padiff.2022.100450. [35] M. Fallah Najafabadi, H. Talebi Rostami, K. Hosseinzadeh and D. D. Ganji, Hydrothermal study of nanofluid flow in channel by RBF method with exponential boundary conditions, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Online First (2022). https://doi.org/10.1177/09544089221133909. [36] M. R. Zangooee, Kh. Hosseinzadeh and D. D. Ganji, Hydrothermal analysis of hybrid nanofluid flow on a vertical plate by considering slip condition, Theoretical and Applied Mechanics Letters 12(5) (2022), 100357. https://doi.org/10.1016/j.taml.2022.100357. [37] S. Dey and S. Mukhopadhyay, MHD nanofluid flow over an absorbent plate in the company of chemical response and zero nanoparticle flux, Forces in Mechanics 7 (2022), 100102. doi:10.1016/j.finmec.2022.100102.
|