Keywords and phrases: Casson fluid, MHD, uniform porous medium, heat absorption, thermal radiation, thermal diffusion.
Received: December 1, 2022; Revised: December 27, 2022; Accepted: January 3, 2023; Published: March 20, 2023
How to cite this article: T. Ramanjaneyulu and L. Hari Krishna, Numerical investigation on unsteady MHD convective flow of a Casson fluid through a vertical plate filled with uniform porous medium, JP Journal of Heat and Mass Transfer 32 (2023), 1-13. http://dx.doi.org/10.17654/0973576323011
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] C. Sulochana and M. Poornima, Unsteady MHD Casson fluid flow through vertical plate in the presence of Hall current, SN Appl. Sci. 1 (2019), 1626. [2] S. Shaw, Ganeswar Mahanta and Mrutyunjay Das, Thermal and solutal Marangoni stagnation point Casson fluid flow over a stretching sheet in the presence of radiation, Soret and Dufour effect with chemical reaction, Heat Transf. Asian Res. 48 (2019), 323-342. [3] M. M. Rashidi, N. Kavyani and S. Abelman, Investigation of entropy generation in MHD and slip flow over a rotating porous disk with variable properties, Int. J. Heat Mass Transf. 70 (2014), 892-917. [4] S. M. Hussain and W. Jamshed, A comparative entropy based analysis of tangent hyperbolic hybrid nanofluid flow: implementing finite difference method, Int. Commun. Heat Mass Transf. 129 (2021), 105671. [5] W. Jamshed and A. Aziz, Entropy analysis of TiO2-Cu/EG Casson hybrid nanofluid via Cattaneo-Christov heat flux model, Appl. Nanosci. 8 (2018), 1-14. [6] W. Jamshed et al., Thermal growth in solar water pump using Prandtl-Eyring hybrid nanofluid: a solar energy application, Sci. Rep. 11(1) (2021), 1-21. [7] A. S. Rao, V. R. Prasad, N. B. Reddy and O. A. Bég, Heat transfer in a Casson rheological fluid from a semi-infinite vertical plate, Conference of Innovations in Mechanical Engineering, 2013, pp. 185-191. [8] R. B. Bird, G. C. Dai and B. J. Yarusso, The rheology and flow of viscoplastic materials, Rev. Chem. Eng. 1(1) (1983), 1-7. [9] A. G. Fredrickson, Principles and Applications of Rheology, Prentice-Hall Englewood Cliffs, NJ, USA, 1964. [10] M. Mustafa, T. Hayat, I. Pop and A. Aziz, Unsteady boundary layer flow of a Casson fluid due to an impulsively started moving flat plate, Heat Transf. Asian Res. 40 (2011), 563-576. http://dx.doi.org/10.1002/htj.20358. [11] I. L. Animasaun, Effects of thermophoresis, variable viscosity and thermal conductivity on free convective heat and mass transfer of non-Darcian MHD dissipative Casson fluid flow with suction and nth order of chemical reaction, J. Nigerian Math. Soc. 34(1) (2015), 11-31. [12] P. Chandra Reddy, M. C. Raju and G. S. S. Raju, MHD natural convective heat generating/absorbing and radiating fluid past a vertical plate embedded in porous medium - an exact solution, Journal of the Serbian Society for Computational Mechanics 12(2) (2018), 106-127. [13] V. Bharathi, J. Prakash, R. Vijayaragavan, R. Balaji and V. Pushparaj, Rotation, electromagnetic field, and variable thermal conductivity effects on free convection flow past an eternity vertical porous plate, Heat Transfer (2022). https://doi.org/10.1002/htj.22797. [14] Riya Ghosh, Titilayo M. Agbaje, Sabyasachi Mondal and Sachin Shaw, Bio-convective viscoelastic Casson nanofluid flow over a stretching sheet in the presence of induced magnetic field with Cattaneo-Christov double diffusion, International Journal of Biomathematics 15(03) (2022), 2150099. https://doi.org/10.1142/S1793524521500996. [15] M. K. Nayak, G. Mahanta, K. Karmakar, P. Mohanty and S. Shaw, Effects of thermal radiation and stability analysis on MHD stagnation Casson fluid flow over the stretching surface with slip velocity, AIP Conference Proceedings 2435 (2022), 020045. https://doi.org/10.1063/5.0084385. [16] I. S. Oyelakin, H. Sithole Mthethwa, Peri K. Kameswaran, S. Shaw and P. Sibanda, Entropy generation optimization for unsteady stagnation Casson nanofluid flow over a stretching sheet with binary chemical reaction and Arrhenius activation energy using the bivariate spectral quasi-linearisation method, International Journal of Ambient Energy 43(1) (2022), 6489-6501. [17] G. Mahanta, M. Das, M. K. Nayak and S. Shaw, Irreversibility analysis of 3D magnetohydrodynamic Casson nanofluid flow past through two bi-directional stretching surfaces with nonlinear radiation, Journal of Nanofluids 10(3) (2021), 316-326. https://doi.org/10.1166/jon.2021.1793. [18] G. Mahanta, S. Shaw, M. K. Nayak and J. C. Pati, Effects on MHD Casson stagnation point flow with stability analysis over the stretching surface in the presence of slip velocity, International Journal of Applied Engineering Research 16(9) (2021), 823-829. [19] R. P. Sharma and S. Shaw, MHD non-Newtonian fluid flow past a stretching sheet under the influence of non-linear radiation and viscous dissipation, Journal of Applied and Computational Mechanics 8(3) (2022), 949-961. doi:10.22055/jacm.2021.34993.2533. [20] S. Shaw, S. S. Samantaray, A. Misra, M. K. Nayak and O. D. Makinde, Hydromagnetic flow and thermal interpretations of cross hybrid nanofluid influenced by linear, nonlinear and quadratic thermal radiations for any Prandtl number, Int. Commun. Heat Mass Transf. 130 (2022), 105816. https://doi.org/10.1016/j.icheatmasstransfer.2021.105816.
|