Keywords and phrases: biomagnetic fluid, magnetic dipole, curved stretching sheet, finite difference method.
Received: January 7, 2023; Accepted: February 21, 2023; Published: March 6, 2023
How to cite this article: M. G. Murtaza, Tamanna Akter, E. E. Tzirtzilkakis and M. Ferdows, Numerical study of biomagnetic fluid flow over an unsteady curved stretching sheet in the presence of magnetic field, Advances and Applications in Fluid Mechanics 30(1) (2023), 35-62. http://dx.doi.org/10.17654/0973468623003
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. N. Rusetski and E. K. Ruuge, Magnetic fluids as drug carriers: targeted transport of drugs by a magnetic field, Journal of Magnetism and Magnetic Materials 122 (1999), 335-339. [2] M. Lauva and J. Plavins, Study of colloidal magnetite binding erythrocytes: prospects for cell separation, Journal of Magnetism and Magnetic Materials 122 (1993), 349-353. [3] A. Gul, E. E. Tzirtzilakis and S. S. Makhanov, Simulation of targeted magnetic drug delivery: two-way coupled biomagnetic fluid dynamics approach, Phys. Fluids 34(2) (2022), 021911. [4] S. A. Jumana, M. Ferdows and E. E. Tzirtzilakis, Biomagnetic flow of heat transfer over moving horizontal plate by the presence of variable viscosity and temperature, Journal of Mechanics in Medicine and Biology 22 (2022), 2250063. https://doi.org/10.1142/S0219519422500634. [5] Y. Haik, J. C. Chen and V. M. Pai, Development of biomagnetic fluid dynamics, Proceedings of the IX International Symposium on Transport Properties in Thermal Fluid Engineering, Singapore, 1996. [6] E. E. Tzirtzilakis, A mathematical model for blood flow in magnetic field, Phys. Fluids 17(7) (2005), 077103-077114. https://doi.org/10.1063/1.1978807. [7] E. E. Tzirtzilakis and N. G. Kafoussias, Biomagnetic fluid flow over a stretching sheet with nonlinear temperature dependent magnetization, Z. Angew. Math. Phys. (ZAMP) 54(4) (2003), 551-565. [8] S. A. Khashan and Y. Haik, Numerical simulation of biomagnetic fluid downstream an eccentric stenotic orifice, Phys. Fluid 18 (2006), 113601. [9] N. Mustapha, N. Amin, S. Chakravarty and P. K. Mandal, Unsteady magnetohydrodynamics blood flow through irregular multi-stenosed arteries, Computer in Biology and Medicine 39(10) (2009), 896-906. [10] Z. Abbas, M. Naveed and M. Sajid, Hydromagnetic slip flow of nanofluid over a curved stretching surface with heat generation and thermal radiation, Journal of Molecular Liquids 215 (2016), 756-762. [11] B. Nagaraja and B. J. Gireesha, Exponential apace-dependent heat generation impact on MHD convective flow of Casson fluid over a curved stretching sheet with chemical reaction, Journal of Thermal Analysis and Calorimetry 143(6) (2021), 4071-4079. [12] T. Hayat, R. S. Saif, R. Ellahi, T. Muhammad and B. Ahmad, Numerical study of boundary-layer flow due to a nonlinear curved stretching sheet with convective heat and mass conditions, Results Physics 7 (2017), 2601-2606. [13] T. Hayat, S. Ayub and A. Alsaedi, Homogeneous-heterogeneous reactions in curved channel with porous medium, Results Physics 9 (2018), 1455-1461. [14] S. Ahmad, S. Nadeem and N. Muhammad, Boundary layer flow over a curved surface imbedded in porous medium, Communications in Theoretical Physics 71(3) (2019), 344-348. [15] M. I. Eldesoky, Mathematical analysis of unsteady MHD blood flow through parallel plate channel with heat source, World Journal of Mechanics 2 (2012), 131-137. [16] L. J. Crane, Flow past a stretching plate, J. Appl. Math. Phys. (ZAMP) 21 (1970), 645-647. [17] H. I. Anderson, An exact solution of the Navier-Stokes equations for magneto-hydrodynamics flow, Acta. Mech. 113 (1995), 241-244. [18] R. N. Jat and S. Chaudhary, Radiation effects on the MHD flow near the stagnation point of a stretching sheet, Z. Angew. Math. Phys. 61 (2010), 1151-1154. [19] I. Pop, A. Ishak and F. Aman, Radiation effects on the MHD flow near the stagnation point of a stretching sheet: revisited, Z. Angew. Math. Phys. 62 (2011), 953-956. [20] S. Das, S. Chakraborty, R. N. Jana and O. D. Makinde, Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition, Appl. Math. Mech. (Engl. Ed.) 36(12) (2015), 1593-1610. [21] B. S. Dandapat, B. Santra and S. K. Singh, Thin film flow over a non-linear stretching sheet in presence of uniform transverse magnetic field, Z. Angew. Math. Phys. 61 (2010), 685-695. [22] J. C. Misra, G. C. Shit and H. J. Rath, Flow and heat transfer of a MHD viscoelastic fluid in a channel with stretching walls: some applications to haemodynamics, Comput. Fluids 37(1) (2008), 1-11. [23] Usama, S. Nadeem and A. U. Khan, Stability analysis of Cu-H2O nanofluid over a curved stretching/shrinking sheet: Existence of dual solutions, Canadian Journal of Physics 97(8) (2019), 911-922. [24] R. E. Rosensweig, Magnetic fluids, Annual Review of Fluid Mechanics 19 (1987), 437-461. [25] M. Ramzan, N. S. Khan and P. Kumam, Mechanical analysis of non Newtonian nanofluid past a thin needle with dipole effect and entropic characteristics, Scientific Reports 11(1) (2021), 1-25. [26] H. I. Andersson and O. A. Valnes, Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole, Acta Mechanica 128(1) (1998), 39-47. [27] E. E. Tzirtzilakis and G. B. Tanoudis, Numerical study of biomagnetic fluid flow over a stretching sheet with heat transfer, International Journal of Numerical Methods for Heat and Fluid Flow 13(3) (2003), 830-848. doi: 10.1108/09615530310502055. [28] H. Matsuki, K. Yamasawa and K. Murakami, Experimental considerations on a new automatic cooling device using temperature sensitive magnetic fluid, IEEE Transaction on Magnetics 13(5) (1977), 1143-1145. [29] E. E. Tzirtzilakis and N. G. Kafoussias, Three-dimensional magnetic fluid boundary layer flow over a linearly stretching sheet, Journal of Heat Transfer 132(1) (2010), 011702. https://doi.org/10.1115/1.3194765. [30] N. G. Kafoussias and E. W. Williams, An improved approximation technique to obtain numerical solution of a class of two-point boundary value similarity problems in fluid mechanics, Internat. J. Numer. Methods Fluids 17(2) (1993), 145-162. [31] M. G. Murtaza, E. E. Tzirtzilakis and M. Ferdows, Effect of electrical conductivity and magnetization on biomagnetic fluid flows over a stretching sheet, Z. Angew. Math. Phys. 68(4) (2017), 1-15. [32] J. Alam, M. G. Murtaza, E. E. Tzirtzilakis and M. Ferdows, Application of biomagnetic fluid dynamics modeling for simulation of flow with magnetic particles and variable fluid properties over a stretching cylinder, Math. Comput. Simulation 199 (2022), 438-462. [33] E. E. Tzirtzilakis, A simple numerical methodology for BFD problems using stream function vortices formulation, Comm. Numer. Methods Engrg. 24 (2008), 683-700. [34] M. G. Murtaza, E. E. Tzirtzilakis and M. Ferdows, Biomagnetic fluid flow past a stretching/shrinking sheet with slip conditions using lie group analysis, AIP Conf. Proc. 2121, 2019, 050005. [35] M. Sajid, N. Ali, T. Javed and Z. Abbas, Stretching a curved surface in a viscous fluid, Chinese Physics Letters 27 (2010), 024703. [36] M. Ferdows, G. Murtaza, J. C. Misra and E. E. Tzirtzilakis, Dual solutions in biomagnetic fluid flow and heat transfer over a nonlinear stretching/shrinking: application of lie group transformation, Math. Biosci. Eng. 17(5) (2020), 4852-4874. [37] M. G. Murtaza, E. E. Tzirtzilakis and M. Ferdows, Numerical solution of three dimensional unsteady biomagnetic flow and heat transfer through stretching/shrinking sheet using temperature dependent magnetization, Archives of Mechanics 70(2) (2018), 161-185.
|