Keywords and phrases: Schrödinger equation, nonlinear problems, homotopy perturbation method, Some Blaise Abbo method.
Received: June 6, 2022; Accepted: July 18, 2022; Published: February 13, 2023
How to cite this article: Joseph Bonazebi Yindoula and Yanick Alain Servais Wellot, Solving nonlinear Schrödinger equation using homotopy perturbation method (HPM) and comparison with the Some Blaise Abbo (SBA) method, Universal Journal of Mathematics and Mathematical Sciences 18(2) (2023), 201-228. http://dx.doi.org/10.17654/2277141723012
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] J. L. Bona and J.-C. Saut, Dispersive blow-up II, Schrödinger type equations, optical and oceanic rogue waves, Chinese Ann. Math. Series B 31 (2010), 793 818. [2] D. H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions, The ANZIAM J. 25 (1983), 16-43. [3] G. Nkaya, F. Bassono, R. Yaro and J. Bonazebi Yindoula, Application of the SBA method for solving the partial differential equation, Journal of Mathematics Research 10(6) (2018), 98-107. [4] Abeer Majeed Jassin, A modified variational iteration method for Schrödinger and Laplace problems, Int. J. Contemp. Math. Sciences 7(13) (2012), 615-624. [5] Abaker A. Hassaballa, Solution of the linear and non linear Schrödinger equation using homotopy perturbation method and variational iteration method, American Journal of Engineering Research (AJER) 6(3) (2017), 107-114. [6] Pare Youssouf, Résolution de quelques équations fonctionnelles par la méthode SBA (Some Blaise-Abbo), PhD thesis, Université de Ouagadougou, 2010. [7] Joseph Bonazebi Yindoula, Gabriel Bissanga, Pare Youssouf, Francis Bassono and Blaise Some, Application of the Adomian decomposition method (ADM) and the Some Blaise Abbo (SBA) method to solving the diffusion-reaction equations, Advances in Theoretical and Applied Mathematics 9(2) (2014), 97-104. [8] J. Belmonte-Beitia and G. F. Calvo, Exact solutions for the quintic nonlinear Schrödinger equation with time and space modulated nonlinearities and potentials, Physics Letters A 373(4) (2009), 448-453. [9] M. M. Mousaa and S. F. Ragab, Application of the homotopy perturbation method to linear and nonlinear Schrödinger equations, Zeitschrift für Naturforschung A 63(3-4) (2008), 140-144. [10] S. A. Khuri, A new approach to the cubic Schrödinger equation: an application of the decomposition technique, Appl. Math. Comput. 97(2-3) (1998), 251-254. [11] A. S. V. Ravi Kanth and K. Aruna, Two-dimensional differential transform method for solving linear and non-linear Schrödinger equations, Chaos Solitons Fractals 41(5) (2009), 2277-2281. [12] A. M. Wazwaz, A study on linear and nonlinear Schrödinger equations by the variational iteration method, Chaos Solitons Fractals 37(4) (2008), 1136 1142. [13] A. Sadighi and D. D. Ganji, Analytic treatment of linear and nonlinear Schrödinger equations: a study with homotopy-perturbation and Adomian decomposition methods, Physics Letters A 372(4) (2008), 465-469.
|