Keywords and phrases: Porous media, two-phase flow, freshwater, seawater, discretization, numerical simulation.
Received: November 13, 2022; Accepted: December 26, 2022; Published: February 11, 2023
How to cite this article: BOKA Paul Emile, DAKOURI Dogba Narcisse and ADOU Kablan Jérôme, Numerical modeling of the seawater intrusion progress, Advances and Applications in Fluid Mechanics 30(1) (2023), 17-33. http://dx.doi.org/10.17654/0973468623002
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References [1] Leonard Stoeckl, Marc Walther and Leanne K. Morgan, Physical and Numerical Modelling of Post-pumping Seawater Intrusion, Hindawi Geofluids Volume 2019, Article ID 7191370, 11 pages. [2] Elad Levanon, Haim Gvirtzman, Yoseph Yechieli, Imri Oz, Elad Ben-Zur and Eyal Shalev, The Dynamics of Sea Tide-induced Fluctuations of Groundwater Level and Freshwater-saltwater Interface in Coastal Aquifers: Laboratory Experiments and Numerical Modeling, Hindawi Geofluids Volume 2019, Article ID 6193134, 9 pages. [3] Min Yan, Chunhui Lu, Jie Yang, Yifan Xie and Jian Luo, MPACT of Low- or High-permeability Inclusion on Free Convection in a Porous Medium, Hindawi Geofluids Volume 2019, Article ID 8609682, 11 pages. [4] Tiansheng Miao, Wenxi Lu, Jin Lin, Jiayuan Guo and Tianliang Liu, Modeling and uncertainty analysis of seawater intrusion in coastal aquifers using a surrogate model: a case study in Longkou, China, Arabian Journal of Geosciences 1 (2019) 12. [5] Qiaona Guo, Jiangwei Huang, Zhifang Zhou and Jinguo Wang, Experiment and Numerical Simulation of Seawater Intrusion under the Influences of Tidal Fluctuation and Groundwater Exploitation in Coastal Multilayered Aquifers, Hindawi Geofluids Volume 2019, Article ID 2316271, 17 pages. [6] Marwan Fahs, A generalized semi-analytical solution for the dispersive Henry Problem: effect of stratification and anisotropy on seawater intrusion, Water, 2018. [7] Moussa Mory Diedhiou, Approche mixte interface nette/diffuse pour les problèmes d’intrusion saline en sous-sol : Modélisation, analyse mathématique et illustrations numériques, Thèse, 2015. [8] Abdelkrim Aharmouch, Brahim Amaziane, Mustapha El Ossmani and Khadija Talali, A Fully Implicit Finite Volume Scheme for a Seawater Intrusion Problem in Coastal Aquifers, Water, 2020. [9] Boutaina Bouzouf and Zhi Chen, A comparison of finite volume method and sharp model for two dimensional saltwater intrusion modeling, Canadian Journal of Civil Engineering 41(3) (2014), 191-196. [10] A. Abudawia, A. Mourad, J. H. Rodrigues and C. Rosier, A Finite Element Method for a Seawater Intrusion Problem in Unconfined Aquifers, Elsevier, 2018. [11] Sylvain Magdeleine, Démonstration de la potentialité des méthodes de SND diphasique à renseigner les modèles moyennés: Application à la colonne à bulles Thèse, 2009. [12] C. J. van Duijn and R. J. Schotting, The interface between fresh and salt groundwater in horizontal aquifers: the Dupuit-Forchheimer approximation revisited, Transport in Porous Media, 2017. [13] Ahmed Ait Hammou Oulhaj, Numerical Analysis of a Finite Volume Scheme for a Seawater Intrusion Model with Cross-diffusion in an Unconfined Aquifer, Wiley, 2018. [14] J. Bear, Dynamics of Fluids in Porous Media, Volume 1, American Elsevier, 1972. [15] G. de Marsily, Hydrogéologie quantitative, Collection Science de la terre, Masson, Paris, 1981. [16] M. El-Haddad, F. Hecht and T. Sayah, Interface transport scheme of a two-phase flow by the method of characteristics, International Journal for Numerical Methods in Fluids 83(6) (2017), 513-543. [17] G. Barles, Solution de viscosité des équations de Hamilton-Jacobi, Collection “Mathématiques et applications” de la SMAI, No. 17, Springer-Verlag, 1994. [18] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computation Mathematics, Vol. 15, Springer-Verlag, Berlin, 1991. [19] F. Hecht, O. Pironneau, A. Le Hyaric and K. Ohtsuka, FREEFEM++, version 2.3 3, 2008. Software available at http://www.freefem.org [20] F. de Vuyst, Numerical modeling of transport problems using FREEFEM++ software - with examples in biology, CFD, traffic flow and energy transfer, Master, Modélisation numérique des problèmes de transport sur FREEFEM++, ENS CACHAN, 2013, pp. 162. [21] O. Pironneau and M. Tabata, Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type, Int. J. Numer. Meth. Fluids 64 (10-12), 1240-1253. [22] M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flows, Journal of Computational Physics 114 (1994), 146-159. [23] D. Peng, B. Merriman, S. Osher, H. Zhao and M. A. Kang, PDE-based fast local level set method, Journal of Computational Physics 155 (1999), 410-438.
|