Keywords and phrases: tumor invasion, chemotherapy, optimal control, adjoint problem.
Received: October 26, 2022; Accepted: January 28, 2023; Published: February 8, 2023
How to cite this article: P. T. Sowndarrajan, Existence and optimal control analysis of acid-mediated tumor invasion model, Advances in Differential Equations and Control Processes 30(1) (2023), 53-72. http://dx.doi.org/10.17654/0974324323004
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] B. Ainseba, M. Bendahmane and R. Ruiz-Baier, Analysis of an optimal control problem for the tridomain model in cardiac electrophysiology, J. Math. Anal. Appl. 388(1) (2012), 231-247. Doi: 10.1016/j.jmaa.2011.11.069. [2] A. R. A. Anderson, A hybrid mathematical model of solid tumor invasion: the importance of cell adhesion, Mathematical Medicine and Biology: A Journal of the IMA 22(2) (2005), 163-186. Doi: 10.1093/imammb/dqi005. [3] R. P. Araujo and D. L. S. McElwain, A history of the study of solid tumour growth: the contribution of mathematical modeling, Bull. Math. Biol. 66 (2004), 1039-1091. Doi: 10.1016/j.bulm.2003.11.002. [4] A. L. de Araujo and P. M. de Magalhães, Existence of solutions and optimal control for a model of tissue invasion by solid tumours, J. Math. Anal. Appl. 421(1) (2015), 842-877. Doi: 10.1016/j.jmaa.2014.07.038. [5] S. P. Chakrabarty and F. B. Hanson, Distributed parameters deterministic model for treatment of brain tumors using Galerkin finite element method, Math. Biosci. 219(2) (2009), 129-141. Doi: 10.1016/j.mbs.2009.03.005. [6] A. J. Coldman and J. M. Murray, Optimal control for a stochastic model of cancer chemotherapy, Math. Biosci. 168(2) (2000), 187-200. Doi: 10.1016/S0025-5564(00)00045-6. [7] L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, Vol. 19, 2002. [8] R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Research 56(24) (1996), 5745-5753. Doi: PMID: 8971186. [9] D. A. Knopoff, D. R. Fernández, G. A. Torres and C. V. Turner, Adjoint method for a tumor growth PDE-constrained optimization problem, Comput. Math. Appl. 66(6) (2013), 1104-1119. Doi: 10.1016/j.camwa.2013.05.028. [10] U. Ledzewicz, M. Naghnaeian and H. Schattler, Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics, J. Math. Biol. 64 (2012), 557-577. Doi: 10.1007/s00285-011-0424-6. [11] A. A. I. Quiroga, D. Fernández, G. A. Torres and C. V. Turner, Adjoint method for a tumor invasion PDE-constrained optimization problem in 2D using adaptive finite element method, Appl. Math. Comput. 270 (2015), 358-368. Doi: 10.1016/j.amc.2015.08.038. [12] S. U. Ryu and A. Yagi, Optimal control of Keller-Segel equations, J. Math. Anal. Appl. 256(1) (2001), 45-66. Doi: 10.1006/jmaa.2000.7254. [13] S. U. Ryu, Optimal control for a parabolic system modeling chemotaxis, Trends in Mathematics Information Center for Mathematical Sciences 6(1) (2003), 45-49. https://www.yumpu.com/en/document/view/34717396/optimalcontrol-for-a-parabolic-system-modelling-. [14] L. Shangerganesh, N. Barani Balan and K. Balachandran, Existence and uniqueness of solutions of degenerate chemotaxis system, Taiwanese J. Math. 18(5) (2014), 1605-1622. Doi: 10.11650/tjm.18.2014.3080. [15] L. Shangerganesh, V. N. Deivamani and S. Karthikeyan, Existence of global weak solutions for cancer invasion parabolic system with nonlinear diffusion, Commun. Appl. Anal. 21(4) (2017), 607-629. Doi: 10.12732/caa.v21i4.8. [16] P. T. Sowndarrajan and L. Shangerganesh, Optimal control problem for cancer invasion parabolic system with nonlinear diffusion, Optimization 67(10) (2018), 1819-1836. Doi: 10.1080/02331934.2018.1486404. [17] P. T. Sowndarrajan, J. Manimaran, A. Debbouche and L. Shangerganesh, Distributed optimal control of a tumor growth treatment model with cross-diffusion effect, The European Physical Journal Plus 134 (2019), 463. Doi: 10.1140/epjp/i2019-12866-8. [18] P. T. Sowndarrajan, N. Nyamoradi, L. Shangerganesh and J. Manimaran, Mathematical analysis of an optimal control problem for the predator-prey model with disease in prey, Optimal Control Appl. Methods 41(5) (2020), 1495-1509. Doi: 10.1002/oca.2611. [19] G. W. Swan, Role of optimal control in cancer chemotherapy, Math. Biosci. 101(2) (1990), 237-284. Doi: 10.1016/0025-5564(90)90021-p. [20] G. W. Swan and T. L. Vincent, Optimal control analysis in the chemotherapy of IgG multiple myeloma, Bull. Math. Biol. 39(3) (1977), 317-337. Doi: 10.1007/BF02462912. [21] A. B. Holder and M. R. Rodrigo, Model for acid-mediated tumour invasion with chemotherapy intervention II: spatially heterogeneous populations, Math. Biosci. 270 (2015), 10-29. Doi: 10.1016/j.mbs.2015.09.007. [22] A. B. Holder and M. R. Rodrigo, Model for acid-mediated tumour invasion with chemotherapy intervention I: homogeneous populations, 2014. Reprint arXiv:1412.0748, Doi: 10.48550/arXiv.1412.0748. [23] O. Warburg, F. Wind and E. Negelein, Über den Stoffwechsel von Tumoren im Körper, Klin Wochenschr 5 (1926), 829-832. Doi: 10.1007/BF01726240.
|