Keywords and phrases: shallow water equations, dam break problem, grid technique, finite volume method.
Received: December 21, 2022; Accepted: January 27, 2023; Published: February 7, 2023
How to cite this article: Diakalia Koné, Abdoulaye Samaké, Yaya Koné and Lamien Kassienou, A numerical framework for the dam break problem for shallow water equations using moving-grid finite volume method, International Journal of Numerical Methods and Applications 23(1) (2023), 87-106. http://dx.doi.org/10.17654/0975045223005
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] H. Tang and T. Tang, Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal. 41(2) (2003), 487-515. [2] W. Huang and R. D. Russell, Adaptive Moving Mesh Methods, Vol. 174, Springer Science and Business Media, 2010. [3] E. Audusse, Modélisation hyperbolique et analyse numérique pour les écoulements en eaux peu profondes, Ph.D. thesis, Paris, 6, 2004. [4] K. Korichi, A. Hazzab and A. Ghenaim, Schémas à captures de chocs pour la simulation numérique des écoulements à surface libre, LARHYSS Journal 8(1) (2010), 81-100. [5] E. Godlewski and P.-A. Raviart, Hyperbolic Systems of Conservation Laws, Ellipses, 1991. [6] M. Ohlberger, Adaptative finite volume methods for displacement problems in porous media, Comput. Visuel Sci. 5(2) (2002), 95-106. [7] F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-balanced Schemes for Sources, Springer Science and Business Media, 2004. [8] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Vol. 31, 2002. [9] P. Lagrée, Résolution numérique des équations de saint-venant, mise en oeuvre en volumes fnis par un solveur de riemann bien balancé, Institut Jean Le Rond D’Alembert, 2020. [10] W. Dai and P. R. Woodward, A simple Riemann solver and high-order Godunov schemes for hyperbolic systems of conservation laws, J. Comput. Phys. 121(1) (1995), 51-65. [11] R. Eymard, T. Gallouït, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations, Numer. Math. 92(1) (2002), 41-82. [12] S. Godounov, Résolution numérique des problemes multidimensionnels de la dynamique des gaz, Mided, 1979. [13] E. Audusse and M.-O. Bristeau, Transport of pollutant in shallow water a two time steps kinetic method, ESAIM: Mathematical Modelling and Numerical Analysis 37(2) (2003), 389-416. [14] A. Bermudez and M. E. Vazquez, Upwind methods for hyperbolic conservation laws with source terms, Comput. & Fluids 23(8) (1994), 1049-1071. [15] L. Kassiénou, S. Longin and O. Mamadou, Using the adaptive mesh finite volume method to solve three test problems, Far East Journal of Applied Mathematics 95(4) (2016), 283-310. [16] V. D. Liseikin, Grid Generation Methods, Vol. 1, Springer, 1999. [17] J. M. Stockie, J. A. Mackenzie and R. D. Russell, A moving mesh method for one-dimensional hyperbolic conservation laws, SIAM J. Sci. Comput. 22(5) (2001), 1791-1813. [18] W. Huang and R. D. Russell, Adaptive mesh movement - the MMPDE approach and its applications, J. Comput. Appl. Math. 128(1-2) (2001), 383-398. [19] A. van Dam and P. A. Zegeling, A robust moving mesh finite volume method applied to 1d hyperbolic conservation laws from magnetohydrodynamics, J. Comput. Phys. 216(2) (2006), 526-546. [20] W. Huang, Practical aspects of formulation and solution of moving mesh partial differential equations, J. Comput. Phys. 171(2) (2001), 753-775. [21] D. J. Higham and N. J. Higham, MATLAB Guide, SIAM, 2016. [22] W. Huang, Y. Ren and R. D. Russell, Moving mesh partial differential equations (MMPDES) based on the equidistribution principle, SIAM J. Numer. Anal. 31(3) (1994), 709-730.
|