Keywords and phrases: thermal energy storage, thermocline, vegetal oil, ceramic balls, concentrating solar power.
Received: November 19, 2022; Revised: December 27, 2022; Accepted: January 4, 2023; Published: January 23, 2023
How to cite this article: Boubou Bagré, Makinta Boukar, Ibrahim Kolawole Muritala, Tizane Daho, Jacques Nébié, Téré Dabilgou, Eric Mensah Mortey, Issoufou Ouarma, Salifou Tera, Armand Korsaga and Adamou Rabani, Modelling and simulation of a sustainable thermal energy storage system for concentrating solar power (CSP) plant using eco-materials, JP Journal of Heat and Mass Transfer 31 (2023), 147-161. http://dx.doi.org/10.17654/0973576323010
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. Ummadisingu and M. S. Soni, Concentrating solar power - technology, potential and policy in India, Renew. Sustain. Energy Rev. 15(9) (2011), 5169-5175. doi:10.1016/j.rser.2011.07.040. [2] R. K. Donga and P. S. Kumar, Enhancement of heat transfer in a semicircular absorber of PTC receiver using a fin, JP J. Heat Mass Transf. 29 (2022), 91-103. [3] U. Herrmann, B. Kelly and H. Price, Two-tank molten salt storage for parabolic trough solar power plants, Energy 29(5-6) (2004), 883-893. doi: 10.1016/S0360-5442(03)00193-2. [4] J. Hoffmann, Stockage thermique pour centrale solaire thermodynamique à concentration mettant en oeuvre des matériaux naturels ou recyclés Préparée au sein de l’école doctorale: Présentée par Jean-François Hoffmann Stockage thermique pour centrale solaire t, 2015. [5] G. Angelini, A. Lucchini and G. Manzolini, Comparison of thermocline molten salt storage performances to commercial two-tank configuration, Energy Procedia 49 (2014), 694-704. doi:10.1016/j.egypro.2014.03.075. [6] P. Release, The 150 MW Noor Ouarzazate III solar tower power plant with storage system accomplished the first synchronization, 2018. [7] Q. Huang, G. Lu, J. Wang and J. Yu, Thermal decomposition mechanisms of MgCl2ꞏ6H2O and MgCl2ꞏH2O, J. Anal. Appl. Pyrolysis 91(1) (2011), 159-164. doi:10.1016/j.jaap.2011.02.005. [8] J. W. Raade and D. Padowitz, Development of molten salt heat transfer fluid with low melting point and high thermal stability, J. Sol. Energy Eng. Trans. ASME 133(3) (2011), 1-7. doi:10.1115/1.4004243. [9] C. M. Anand Partheeban and M. Rajendran, Experimental analysis of solar collector with thermal storage device (stone and sodium acetate trihydrate), JP J. Heat Mass Transf. 19(2) (2020), 301-316. doi:10.17654/HM019020301. [10] J.-F. Hoffmann, T. Fasquelle, V. Goetz and X. Py, A thermocline thermal energy storage system with filler materials for concentrated solar power plants: experimental data and numerical model sensitivity to different experimental tank scales, Appl. Therm. Eng. 100 (2016), 753-761. doi:10.1016/j.applthermaleng.2016.01.110. [11] S. M. Flueckiger, Z. Yang and S. V. Garimella, Thermomechanical simulation of the solar one thermocline storage tank, J. Sol. Energy Eng. Trans. ASME 134(4) (2012), 041014-1-041014-6. doi:10.1115/1.4007665. [12] D. Schlipf, E. Faust, G. Schneider and H. Maier, First operational results of a high temperature energy storage with packed bed and integration potential in CSP plants, AIP Conf. Proc. 1850 (2017), 080024-1 to 080024-8. doi: 10.1063/1.4984445. [13] G. Zanganeh et al., A 3 MWth parabolic trough CSP plant operating with air at up to 650°C, doi:10.1109/IRSEC.2014.7059884. [14] S. Zunft, M. Hänel, M. Krüger, V. Dreißigacker, F. Göhring and E. Wahl, Jülich solar power tower - experimental evaluation of the storage subsystem and performance calculation, J. Sol. Energy Eng. Trans. ASME 133(3) (2011), 1-5. doi:10.1115/1.4004358. [15] B. Boubou et al., Review on thermocline storage effectiveness for concentrating solar power plant, Energy and Power Engineering 13(10) (2021), 343-364. doi: 10.4236/epe.2021.1310024. [16] P. Nikkola, O. Sari, M. Despont, P. Haas and P. W. Egolf, Thermodynamic model of a phase-shifting device operating with a phase change material, JP J. Heat Mass Transf. 15(3) (2018), 747-768. doi:10.17654/HM015030747. [17] Bagre et al., Development of Sensible Heat Storage Materials Using Sand, Clay and Coal Bottom Ash, doi:10.4236/msa.2022.1312038. [18] T. Esence, A. Bruch, S. Molina, B. Stutz and J. F. Fourmigué, A review on experience feedback and numerical modeling of packed-bed thermal energy storage systems, Sol. Energy 153 (2017), 628-654. doi:10.1016/j.solener.2017.03.032. [19] C. Xu, Z. Wang, Y. He, X. Li and F. Bai, Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system, Appl. Energy 92 (2012), 65-75. doi:10.1016/j.apenergy.2011.11.002. [20] J. E. Pacheco, S. K. Showalter and W. J. Kolb, Solar energy: the power to choose, Proc. Sol. Forum, 2001. [Online]. Available: http://infohouse.p2ric.org/ref/22/21032.pdf. [21] J. F. Hoffmann, T. Fasquelle, V. Goetz and X. Py, Experimental and numerical investigation of a thermocline thermal energy storage tank, Appl. Therm. Eng. 114 (2017), 896-904. doi:10.1016/j.applthermaleng.2016.12.053. [22] J. F. Hoffmann et al., Temperature dependence of thermophysical and rheological properties of seven vegetable oils in view of their use as heat transfer fluids in concentrated solar plants, Sol. Energy Mater. Sol. Cells 178 (2018), 129-138. doi:10.1016/j.solmat.2017.12.037. [23] J. Nébié et al., Performance assessment of a box type solar cooker using Jatropha oil as a heat storage material, Energy Power Eng. 14(02) (2022), 124-132. doi:10.4236/epe.2022.142005. [24] V. W. Bhatkar, Analytical study of heat and mass transfer in air washer, JP J. Heat Mass Transf. 29 (2022), 179-188. doi:10.17654/0973576322050. [25] K. Kant, A. Shukla, A. Sharma, A. Kumar and A. Jain, Thermal energy storage based solar drying systems: a review, Innov. Food Sci. Emerg. Technol. 34 (2016), 86-99. doi:10.1016/j.ifset.2016.01.007.
|