Keywords and phrases: first law of thermodynamics, heat flow, non-equilibrium, information entropy, energy spectrum, climate change.
Received: November 3, 2022; Accepted: December 5, 2022; Published: January 23, 2023
How to cite this article: R. Englman, A Lindbladian operator for open system thermalization, with applications, JP Journal of Heat and Mass Transfer 31 (2023), 99-121. http://dx.doi.org/10.17654/0973576323008
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] Intergovernmental Panel on Climate change (IPCC), 2021 AR6 Climate Change 2021: The Physical Science Basis, 7 August 2021. [2] C. Kittel and H. Kraemer, Thermal Physics, Freeman, New York, N.Y., 2000. [3] G. Benenti, S. Lepri and R. Livi, Anomalous heat transport in classical many-body systems: overview and perspectives, Front. Phys. 8 (2020), 292. doi:org/103389/fphy.2020.00292. [4] D. Segal and A. Nitzan, Spin-Boson rectifiers, Phys. Rev. Lett. 94 (2005), 034301-1-4. [5] N. B. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi and B. W. Li, Colloquium: phononics: manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys. 84 (2012), 1045-1066. [6] D. Segal, A. Nitzan and P. Hänggi, Thermal conductance through molecular wires, J. Chem. Phys. 119(13) (2003), 6840-6855. doi:10.1063/1.1603211. [7] D. Segal and B. K. Agarwalla, Vibrational heat transport in molecular junctions, Ann. Rev. Phys. Chem. 67(1) (2016), 185-209. doi:10.1146/annurev-physchem-040215-112103. [8] N. Mosso, H. Sadeghi, A. Gemma, S. Sangtarash et al., Thermal transport through single-molecule junctions, Nano Lett. 19(11) (2019), 7614-7622. doi.org/10/1021/acs.nanolett.9b02089. [9] R. Kosloff, Quantum thermodynamics: a dynamical viewpoint, Entropy 15 (2013), 2100-2128. ArXiv:1305.2268. [10] R. Gallego, A. Riera and J. Eisert, Thermal machines beyond the weak coupling regime, New J. Phys. 16(12) (2014), 1125009. ArXiv:1310.1800. [11] R. Uzdin, A. Levy and R. Kosloff, Equivalence of quantum heat machines, and quantum-thermodynamic signatures, Phys. Rev. X 5 (2015), 031044-1-21. doi.org/10.1103/Phys.Rev.X.5.031044. [12] G. Benenti, G. Casati, K. Saito and R. S. Whitney, Fundamental aspects of steady-state conversion of heat to work at the nanoscale, Physics Reports 694 (2017), 1-124. [13] M. Žnidarič, T. Prosen, G. Benenti, G. Casati and D. Rossini, Thermalization and ergodicity in one-dimensional many-body open quantum systems, Phys. Rev. E 81(5) (2010), 051135, 1-5. [14] M. Mohseni, Y. Omar, G. S. Engel and M. B. Plenio, Quantum Effects in Biology, Cambridge University Press, United Kingdom, 2014. [15] M. Schlosshauer, Decoherence, the measurement problem, and interpretations of quantum mechanics, Rev. Mod. Phys. 76 (2005), 1267-1305. [16] H.-P. Breuer and F. F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, New York, 2002, 625 pp. [17] H.-P. Breuer, Non-Markovian generalization of the Lindblad theory of open quantum systems, Phys. Rev. A 75 (2007), 022103, 1-10. [18] H.-P. Breuer, E.-M. Laine, J. Pilo and B. Vacchini, Non Markovian dynamics in open quantum systems, 2015. ArXiv:1505.01385. [19] J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43 (1991), 2046-49. [20] A. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50 (1994), 888-901. [21] E. Altman and E. A. Demler, Condensed-matter physics: relaxation after a tight squeeze, Nature 449 (2007), 296-7. [22] T. Kinoshita, T. Wenger and D. S. Weiss, A quantum Newton’s cradle, Nature 440 (2006), 9000-5. [23] S. Hofferverth, L. Lesanovsky, B. Fischer et al., Non-equilibrium coherence dynamics in one-dimensional Bose gases, Nature 449 (2007), 324-327. [24] M. Rigol, V. Dunjko, V. Yurovski and M. Olshanii, Relaxation in a completely integrable many body quantum system, Phys. Rev. Lett. 98 (2007), 050405, 1-4. [25] G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48 (1976), 119-130. [26] V. Gorini, A. Kossakowski and E. C. G. Sudarshan, Completely positive dynamical semigroups of N-level systems, J. Math. Phys. 17 (1976), 821-825. [27] P. Pearle, Simple derivation of the Lindblad equation, European Journal of Physics 33(4) (2012), 805-822. [28] F. Barra and C. Liedo, The smallest absorption refrigerator: the thermodynamics of a system with quantum local detailed balance, European Journal of Physics Special Topics (2018), 231-246. [29] A. Rivas and S. F. Huelga, Open Quantum Systems. An Introduction, 2012, pp. 1-100. ArXiv:104.5242v2. [30] A. Schnell, A. Eckardt and S. Denisov, Is there a Floquet Lindbladian? Phys. Rev. B 101 (2020), 100301-3. [31] F. Haddadfarshi, J. Cui and F. Mintert, Completely positive approximate solutions of driven open quantum systems, Phys. Rev. Lett. 114 (2015), 130402, 1-5. [32] S. Restrepo, J. Cerrillo, V. M. Bastidas, D. G. Angelakis and T. Brandes, Driven open quantum systems and Floquet stroboscopic dynamics, Phys. Rev. Lett. 117 (2016), 250401-6. [33] T. Shirai, T. Mori and S. Miyashita, Floquet-Gibbs state in open quantum systems, European Journal of Physics Special Topics (2018), 227-233. [34] C. M. Dai, Z. C. Shi and X. X. Yi, Floquet theorem with open systems and its applications, Phys. Rev. A 93 (2016), 032121, 1-5. [35] B. V. Bondarev, Lindblad equation for harmonic oscillators: uncertainty relations depending on temperature, Appl. Math. 8(11) (2017), 1529-1538. doi:10.4236/am.2017.811111. [36] B. V. Bondarev, New theory of laser. Method of density-matrix, I. Parinov, S. H. Chang, Y. H. Kim, eds., Advanced Materials, Springer Proceedings in Physics, Vol. 224, Springer, New York, 2019. [37] I. Reichental, A. Klempner, Y. Kafri and D. Podolsky, Thermalization in open quantum systems, Phys. Rev. B 97 (2018), 134301, 1-8. [38] L. Onsager, Reciprocal relations in irreversible processes, Phys. Rev. 37 (1931), 405-426. https://doi.org/10.1103/PhysRev.37.405. [39] S. Goldstein and J. L. Lebowitz, Entropy of nonequilibrium systems, 2013, pp. 1-36. ArXiv:cond-mat/030425102. [40] C. A. Cimmelli, D. Jou, T. Ruggeri and P. Ván, Entropy principle and recent results in non-equilibrium theories, Entropy 16(3) (2004), 1756-1807. [41] W. T. Grandy, Jr., Time evolution in macroscopic systems, I, Equations of motion, Foundation of Physics 34 (2004), 1-20. [42] W. T. Grandy, Jr., Time evolution in macroscopic systems, II, The entropy, Foundation of Physics 34 (2004), 21-57. [43] W. T. Grandy, Jr., Time evolution in macroscopic systems, III, Applications, Foundation of Physics 34 (2004), 58-100. [44] E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (1957), 620-626. [45] R. Englman, The Jahn-Teller Effect in Molecules and Solids, Wiley, Chichester, U.K., 1972. [46] T. Tomé and M. de Oliveira, Entropy production in non-equilibrium quantum systems, Phys. Rev. Lett. 108 (2012), 020601, 1-5. [47] Y. A. Sade, G. Babaji and M. A. Lawal, Phonon dispersion relation and density of states in some selected FCC metal crystals, IOSR Journal of Applied Physics (IOSR-JAP) 9(5) (2017), 47-51. doi:10.9790/4861-0905024751. [48] J.-M. Manceau, P. A. Loukakos and S. Tzoritzakis, Pumping coherent lattice modes by terahertz pulse in GaAlAs, Appl. Phys. Lett. 97 (2010), 251904, 1-3. [49] Z.-P. Fu and M. Yamaguchi, Coherent excitation of optical phonons in GaAs by broadband terahertz pulses, Science Reports 6 (2016), 38264, 1-9. doi:10.1038/srep38264.
|