Keywords and phrases: heat transfer, nanofluid, nanoparticle ionization, mass transfer, natural convection.
Received: July 26, 2022; Revised: September 19, 2022; Accepted: October 11, 2022; Published: January 23, 2023
How to cite this article: Aditya Kumar Pati, Ashok Misra, Saroj Kumar Mishra, Sujit Mishra, Runu Sahu and Subhashree Panda, Computational modelling of heat and mass transfer optimization in copper water nanofluid flow with nanoparticle ionization, JP Journal of Heat and Mass Transfer 31 (2023), 1-18. http://dx.doi.org/10.17654/0973576323001
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticle, Developments and Applications of Non-Newtonian Flows, ASME MD, Vol. 231 and FED, Vol. 66, 1995, pp. 99-105. [2] S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke, Anomalously thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett. 79 (2001), 2252-2254. [3] J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transf. 128 (2006), 240-250. [4] R. K. Tiwari and M. K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat Mass Transf. 50 (2007), 2002-2018. [5] M. Sabour and M. Ghalambaz, The force convection heat transfer of a nanofluid over a flat plate: using the Buongiorno’s model: the thermophysical properties as a function of nanoparticles, Advanced Energy: An International Journal (AEIJ) 3(1) (2016), 1-20. [6] A. V. Kuznetsov and D. A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate, Int. J. Thermal Sci. 49 (2010), 243-247. [7] W. A. Khan and A. Aziz, Natural convection flow of a nanofluid over a vertical plate with uniform surface heat flux, Int. J. Thermal Sci. 50 (2011), 1207-1214. [8] A. Aziz and W. A. Khan, Natural convective boundary layer flow of a nanofluid past a convectively heated vertical plate, Int. J. Thermal Sci. 52 (2012), 83-90. [9] O. D. Makinde, W. A. Khan and Z. H. Khan, Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet, Int. J. Heat Mass Transf. 62 (2013), 526-533. [10] R. Kandasamy, R. Dharmalingam and K. K. S. Prabhu, Thermal and solutal stratification on MHD nanofluid flow over a porous vertical plate, Alexandria Engineering Journal 57 (2018), 121-130. [11] H. Upreti, A. K. Pandey and M. Kumar, MHD flow of Ag water nanofluid over a flat porous plate with viscous-Ohmic dissipation, suction/injection and heat generation/absorption, Alexandria Engineering Journal 57 (2018), 1839-1847. [12] H. Upreti, S. K. Rayat and M. Kumar, Radiation and non-uniform heat sink/ source effects on 2D MHD flow of CNTs-H2O nanofluid over a flat porous plate, Multidiscipline Modeling in Materials and Structures 16(4) (2020), 791-809. [13] T. Anwar, P. Kumam, Z. Shah, W. Watthayu and P. Thounthong, Unsteady radiative natural convective MHD nanofluid flow past a porous moving vertical plate with heat source/sink, Molecules 25(4) (2020), 854. https://doi.org/10.3390/molecules25040854. [14] H. Upreti, A. K. Pandey, S. K. Rayat and M. Kumar, Modified Arrhenius and thermal radiation effects on three-dimensional magnetohydrodynamic flow of carbon nanotubes nanofluids over bi-directional stretchable surface, Journal of Nanofluids 10 (2021), 538-551. [15] M. K. Nayak, R. Mehmood, S. Mishra, A. Misra and T. Muhammad, Thermal and velocity slip effects in mixed convection flow of magnetized ceramic-nanofluids over a thin needle with variable physical properties, Waves in Random and Complex Media (2021). doi:10.1080/17455030.2021.1983231. [16] S. Dey and S. Mukhopadhyay, MHD nanofluid flow over an absorbent plate in the company of chemical response and zero nanoparticle flux, Forces in Mechanics 7 (2022), 100102. [17] S. Arulmozhi, K. Sukkiramathi, S. S. Santra, R. Edwan, U. Fernandez-Gamiz and S. Noeiaghdam, Heat and mass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving vertical plate, Results in Engineering 14 (2022), 100394. [18] S. L. Soo, Effect of electrification on the dynamics of a particulate system, Industrial and Engineering Chemistry Fundamentals 3 (1964), 75-80. [19] L. B. Loeb, Static Electrification, Springer-Verlag, Berlin, Germany and New York, 1958. [20] Z. Kang and L. Wang, Effect of thermal-electric cross coupling on heat transport in nanofluids, Energies 10(1) (2017), 123. https://doi.org/10.3390/en10010123. [21] S. Mishra, M. K. Nayak and A. Misra, Thermal conductivity of nanofluids - a comprehensive review, International Journal of Thermofluid Science and Technology 7(3) (2020), 1-51. [22] P. Rana and R. Bhargava, Numerical study of heat transfer enhancement in mixed convection flow along a vertical plate with heat source/sink utilizing nanofluids, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 4318-4334. [23] A. K. Pati, A. Misra and S. K. Mishra, Effect of electrification of nanoparticles on heat and mass transfer in boundary layer flow of a copper water nanofluid over a stretching cylinder with viscous dissipation, JP Journal of Heat and Mass Transfer 17(1) (2019), 97-117. [24] M. Mahrukh, A. Kumar, S. Gu, S. Kamnis and E. Gozali, Modeling the effects of concentration of solid nanoparticles in liquid feedstock injection on high-velocity suspension flame spray process, Ind. Eng. Chem. Res. 55 (2016), 2556-2573. [25] H. F. Oztop and E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, International Journal of Heat Fluid Flow 29 (2008), 1326-1336. [26] M. Ferdows, M. Shamshuddin, S. O. Salawu and K. Zaimi, Numerical simulation for the steady nanofluid boundary layer flow over a moving plate with suction and heat generation, SN Appl. Sci. 3 (2021), Article number: 264. [27] N. S. Khashi’ie, N. M. Arifin and I. Pop, Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating, Alexandria Engineering Journal 61 (2022), 1938-1945. [28] M. H. Matin and P. Jahangiri, Forced convection boundary layer magnetohydrodynamic flow of nanofluid over a permeable stretching plate with viscous dissipation, Thermal Science 18(Suppl. 2) (2014), 587-598.
|