Keywords and phrases: generated family, Gompertz distribution, maximum likelihood estimation, Fisher information matrix, entropies, quantile function.
Received: November 22, 2022; Revised: December 23, 2022; Accepted: January 2, 2023; Published: January 18, 2023
How to cite this article: Ali A. Al-Shomrani, A. I. Shawky, Osama H. Arif and Muhammad Aslam, Gompertz family of distributions: properties and applications, Advances and Applications in Statistics 85 (2023), 79-103. http://dx.doi.org/10.17654/0972361723011
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] E. A. Ahmed, Estimation of some lifetime parameters of generalized Gompertz distribution under progressively Type-II censored data, Applied Mathematical Modelling 39 (2015), 5567-5578. [2] H. Akaike, Information theory and an extension of the maximum likelihood principle, B. N. Petrov and F. Csaki, eds., Second International Symposium on Information Theory, Akademia Kiado, Budapest, 1973, pp. 267-281. [3] H. Akaike, A new look at the statistical model identification, IEEE Trans. Automat. Control 19 (1974), 716-723. [4] H. Akaike, Likelihood of a model and information criteria, J. Econometrics 16 (1981) 3-14. [5] O. M. Akpa and E. I. Unuabonah, Small-sample corrected Akaike information criterion: an appropriate statistical tool for ranking of adsorption isotherm models, Desalination 272 (2011), 20-26. [6] S. Aktos, Quantile function for Rayleigh distribution Kapasitans-Voltaj (C-V), Afyon Kocatepe University Journal of Sciences 11 (2011), 9-12. [7] C. Alexander, G. M. Cordeiro, E. M. M. Ortega and J. M. Sarabia, Generalized beta generated distributions, Comput. Statist. Data Anal. 56 (2012), 1880-1897. [8] M. Alizadeh, M. Emadi, M. Doostparast, G. M. Cordeiro, E. M. M. Ortega and R. R. Pescim, A new family of distributions: the Kumaraswamy odd log-logistic, properties and applications, Hacet. J. Math. Stat. 44(6) (2015), 1491-1512. [9] M. A. Aljarrah, C. Lee and F. Famoye, On generating T-X family of distributions using quantile function, Journal of Statistical Distributions and Applications 1 (2014), Article number 2. [10] A. Al-Shomrani, O. Arif, A. I. Shawky, S. Hanif and M. Q. Shahbaz, Topp-Leone family of distribution: some properties and application, Pak. J. Stat. Oper. Res. 12 (2016), 443-451. [11] A. Alzaatreh, C. Lee and F. Famoye, A new method for generating families of continuous distributions, Metron 71 (2013), 63-79. [12] A. Alzaatreh, C. Lee and F. Famoye, T-normal family of distributions: A new Approach to generalize the normal distribution, Journal of Statistical Distributions and Applications 1 (2014), Article number 16. [13] A. Alzaghal, F. Famoye and C. Lee, Exponentiated T-X family of distributions with some applications, International Journal of Probability and Statistics 2 (2013), 31-49. [14] M. Amini, S. M. T. K. MirMostafaee and J. Ahmadi, Log-gamma-generated families of distributions, Statistics 48 (2014), 913-932. [15] M. M. Ananda, R. J. Dalpatadu and A. K. Singh, Adaptive Bayes estimators for parameters of the Gompertz survival model, Appl. Math. Comput. 75(2-3) (1996), 167-177. [16] D. R. Anderson, K. P. Burhnam and G. C. White, Comparison of Akaike information criterion and consistent Akaike information criterion for model selection and statistical inference from capture-recapture studies, J. Appl. Stat. 25(2) (1998), 263-282. [17] M. Asadi, On the mean past lifetime of the components of a parallel system, J. Statist. Plann. Inference 136 (2006), 1197-1206. [18] I. Bairamov and M. Ozkut, Mean residual life and inactivity time of a coherent system subjected to Marshall-Olkin type shocks, J. Comput. Appl. Math. 298 (2016), 190-200. [19] A. C. Bemmaor and N. Glady, Modeling purchasing behavior with sudden death: a flexible customer lifetime model, Management Science 58(5) (2012), 1012-1021. [20] M. Bourguignon, R. B. Silva and G. M. Cordeiro, The Weibull-G family of probability distributions, Journal of Data Science 12 (2014), 53-68. [21] H. Bozdogan, Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions, Psychometrika 52 (1987), 345-370. [22] K. Brown and W. Forbes, A mathematical model of aging processes, Journal of Gerontology 29(1) (1974), 46-51. [23] G. M. Cordeiro and M. de Castro, A new family of generalized distributions, J. Stat. Comput. Simul. 81 (2011), 883-893. [24] G. M. Cordeiro, E. M. Ortega and D. C. da Cunha, The exponentiated generalized class of distributions, Journal of Data Science 11 (2013), 1-27. [25] G. M. Cordeiro, M. Alizadeh and E. M. M. Ortega, The exponentiated half-logistic family of distributions: properties and applications, J. Probab. Stat. 2014, Article ID 864396, 21 pp. [26] G. M. Cordeiro, E. M. M. Ortega, B. V. Popović and R. R. Pescim, The Lomax generator of distributions: properties, minification process and regression model, Appl. Math. Comput. 247 (2014), 465-486. [27] A. C. Economos, Rate of aging, rate of dying and the mechanism of mortality, Archives of Gerontology and Geriatrics 1(1) (1982), 46-51. [28] A. El-Gohary, A. Alshamrani and A. Al-Otaibi, The generalized Gompertz distribution, Applied Mathematical Modeling 37 (2013), 13-24. [29] N. Eugene, C. Lee and F. Famoye, Beta-normal distribution and its applications, Comm. Statist. Theory Methods 31 (2002), 497-512. [30] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed., Academic Press, San Diego, 2007. [31] E. J. Hannan and B. G. Quinn, The determination of the order of an autoregression, J. Roy. Statist. Soc. Ser. B 41 (1979), 190-195. [32] D. Holfman and O. J. Karst, The theory of the Rayleigh distribution and some of its applications, Journal of Ship Research 19(3) (1975), 172-191. [33] J. Kenney and E. Keeping, Mathematics of Statistics, Volume 1, 3rd ed., D. Van Nostrand Company, Princeton, New Jersey, 1962. [34] S. Lalitha and A. Mishra, Modified maximum likelihood estimation for Rayleigh distribution, Comm. Statist. Theory Methods 25 (1996), 389-401. [35] S. Minimol and P. Y. Thomas, On characterization of Gompertz distribution by properties of generalized record values, J. Stat. Theory Appl. 13(1) (2014), 38-45. [36] J. J. A. Moors, A quantile alternative for kurtosis, The Statistician 37 (1998), 25 32. [37] H. M. Moustafa and S. G. Ramadan, Errors of misclassification and their probability distributions when the parent populations are Gompertz, Appl. Math. Comput. 163 (2005), 423-442. [38] S. Nadarajah, G. M. Cordeiro and E. M. M. Ortega, The Zografos-Balakrishnan-G family of distributions: mathematical properties and applications, Comm. Statist. Theory Methods 44 (2015), 186-215. [39] S. Nadarajah and F. Haghighi, An extension of the exponential distribution, Statistics 45(6) (2011), 543-558. [40] A. Rényi, On measures of entropy and information, 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, 1961, pp. 547-561. [41] M. M. Ristić and N. Balakrishnan, The gamma-exponentiated exponential distribution, J. Stat. Comput. Simul. 82 (2012), 1191-1206. [42] S. Rezaei, B. B. Sadr, M. Alizadeh and S. Nadarajah, Topp-Leone generated family of distributions: properties and applications, Comm. Statist. Theory Methods 46 (2017), 2893-2909. [43] M. Santos-Neto, M. Bourguignon, L. M. Zea, A. D. Nascimento and G. M. Cordeiro, The Marshall-Olkin extended Weibull family of distributions, Journal of Statistical Distributions and Applications 1 (2014), Article number 9. [44] G. Schwarz, Estimating the dimension of a model, Ann. Statist. 6 (1978), 461-464. [45] C. E. Shannon, Prediction and entropy of printed English, Bell System Technical Journal 30 (1951), 50-64. [46] H. Shono, Efficiency of the finite correction of Akaike’s information criteria, Fisheries Science 66 (2000), 608-610. [47] M. H. Tahir, G. M. Cordeiro, A. Alzaatreh, M. Mansoor and M. Zubair, The logistic-X family of distributions and its applications, Comm. Statist. Theory Methods 45(24) (2016), 7326-7349. [48] H. Torabi and N. H. Montazeri, The logistic-uniform distribution and its applications, Comm. Statist. Simulation Comput. 43(10) (2014), 2551-2569. [49] W. Willemse and H. Kappelaar, Knowledge elicitation of Gompertz law of mortality, Scand. Actuar. J. 2 (2000), 168-179. [50] K. Zografos and N. Balakrishnan, On families of beta- and generalized gamma- generated distributions and associated inference, Stat. Methodol. 6 (2009), 344-362.
|