Keywords and phrases: Lie color algebra, involution, –1-eigenspace.
Received: November 17, 2022; Accepted: December 24, 2022; Published: January 10, 2023
How to cite this article: Sibiri Kabore and Patricia L. Zoungrana, Some results on Lie color triple systems, JP Journal of Geometry and Topology 29(1) (2023), 1-17. http://dx.doi.org/10.17654/0972415X23001
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] Dongho Moon, The centralizer algebras of Lie color algebras, J. Communications in Algebra 27(7) (1999), 3233-3261. [2] E. Cartan, œuvre complètes, Part 1, Vol. 2, Nos. 107, 138, Paris, Gauthier-Vollars, 1952. [3] T. L. Hodge, Lie triple systems, restricted Lie triple systems and algebraic groups, J. Algebra 244 (2001), 533-580. [4] P. L. Zoungrana, A note on Lie-Yamaguti superalgebras, Far East J. Math. Sci. (FJMS) 100(1) (2016), 1-18. [5] Martín Antonio J. Calderón and José M. Sánchez Delgado, On the structure of split Lie color algebras, Linear Algebra and its Applications 436(2) (2012), 307-315. [6] Meyer Philippe, Representation Associated to Gradations of Lie Algebras and Colour Lie Algebras, Diss. Université de Strasbourg, 2019. [7] N. Bourbaki, Algèbre Chap. II, Harmann, Paris, 1962. [8] N. Bourbaki, Algèbre Chap. III, Harmann, Paris, 1971. [9] R. Ree, Generalized Lie elements, Canadian J. Math. Phys. 12 (1960), 493-502. [10] Manfred Scheunert, Generalized Lie algebras, Journal of Mathematical Physics 4(20) (1979), 712-720. [11] A. N. Issa and P. L. Zoungrana, On Lie-Yamaguti color algebras, Mat. Vesnik 71(3) (2019), 196-206. [12] Yan Cao, Jian Zhang and Yunan Cui, On split Lie color triple systems, J. Open Mathematics 17 (2019), 267-281. [13] Zhang Zhixue, Liu Wenli and Jia Peipei, On the classification of simple Lie supertriple systems, J. Advances in Mathematics 40(3) (2011), 293-298. [14] Zoungrana Patricia Lucie and Pilabre, Nakelgbamba Boukary, On Lie superalgebras involutions and Lie supertriple systems, International Journal of Mathematical Sciences and Applications 4(1) (2014), 53-71.
|