Keywords and phrases: singular perturbation, boundary value problems, shooting method, locally exact integration, stability, asymptotic approximations.
Received: October 28, 2022; Revised: November 13, 2022; Accepted: December 24, 2022; Published: January 9, 2023
How to cite this article: Haifa S. Al-Juaydi and Essam R. El-Zahar, An effective shooting piecewise analytical integration method for singular perturbation two-point boundary value problems, Advances in Differential Equations and Control Processes 30(1) (2023), 27-52. http://dx.doi.org/10.17654/0974324323003
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References
[1] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers I, Springer Science & Business Media, 1999. [2] R. S. Johnson, Singular Perturbation Theory, Mathematical and Analytical Techniques with Applications to Engineering, Springer, New York, NY, USA, 2005. [3] T. Nguyen and Z. Gajic, Finite horizon optimal control of singularly perturbed systems: a differential Lyapunov equation approach, IEEE Trans. Automat. Control 55(9) (2010), 2148-2152. [4] J. Kevorkian and J. D. Cole, Perturbation Methods in Applied Mathematics, Springer-Verlag, New York, 1981. [5] E. R. El-Zahar, Applications of adaptive multi step differential transform method to singular perturbation problems arising in science and engineering, Applied Mathematics and Information Sciences 9(1) (2015), 223-232. [6] R. E. O’Malley, Singular Perturbation Methods for Ordinary Differential Equations, Springer-Verlag, New York, 1991. [7] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O’Riordan and G. I. Shishkin, Robust Computational Techniques for Boundary Layers, Chapman & Hall, CRC Press, London, Boca Raton, FL, 2000. [8] E. P. Doolan, J. J. H. Miller and W. H. Schilders, A. Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin, Ireland, 1980. [9] H. G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations, Springer, Berlin, 1996. [10] K. W. Morton, Numerical Solution of Convection-diffusion Problems, Chapman & Hall, London, 1996. [11] J. J. H. Miller, E. O’Riordan and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore, 1996. [12] S. N. Ha, A nonlinear shooting method for two-point boundary value problems, Comput. Math. Appl. 42(10-11) (2001), 1411-1420. [13] M. Matinfar and M. Ghasemi, Solving BVPs with shooting method and VIMHP, J. Egyptian Math. Soc. 21(3) (2013), 354-360. [14] M. Ahsan and S. Farrukh, A new type of shooting method for nonlinear boundary value problems, Alexandria Engineering Journal 52(4) (2013), 801-805. [15] S. Javeed, A. Shabnam and D. Baleanu, An improved shooting technique for solving boundary value problems using higher order initial approximation algorithms, Punjab University Journal of Mathematics 51(11) (2019), 101-113. [16] S. Natesan and N. Ramanujam, ‘Shooting method’ for singularly perturbed one-dimensional reaction-diffusion Neumann problems, Int. J. Comput. Math. 72(3) (1999), 383-393. [17] S. Natesan and N. Ramanujam, “Shooting method” for the solution of singularly perturbed two-point boundary-value problems having less severe boundary layer, Appl. Math. Comput. 133(2-3) (2002), 623-641. [18] J. Vigo-Aguiar and S. Natesan, An efficient numerical method for singular perturbation problems, J. Comput. Appl. Math. 192(1) (2006), 132-141. [19] F. Z. Geng and Z. Q. Tang, Piecewise shooting reproducing kernel method for linear singularly perturbed boundary value problems, Appl. Math. Lett. 62 (2016), 1-8. [20] J. C. Roja and A. Tamilselvan, Numerical method for singularly perturbed third order ordinary differential equations of reaction-diffusion type, Journal of Applied Mathematics & Informatics 35(3-4) (2017), 277-302. [21] J. I. Ramos, Linearization techniques for singular initial-value problems of ordinary differential equations, Appl. Math. Comput. 161(2) (2005), 525-542. [22] A. M. N. Ebady, E. R. El-Zahar, H. M. Habib and Y. S. Hamed, A piecewise approximate analytical solution of singular perturbation problems using an analytical integration scheme, Wulfenia 22(12) (2015), 344-355. [23] E. R. El-Zahar, A. M. Rashad and A. M. Gelany, Studying high suction effect on boundary-layer flow of a nanofluid on permeable surface via singular perturbation technique, J. Comput. Theor. Nanosci. 12 (2015), 4828-4836. [24] E. R. El-Zahar and H. M. Habib, Mathematical modeling of heat-transfer for a moving sheet in a moving fluid, J. Appl. Fluid Mech. 6 (2013), 369-373. [25] E. R. El-Zahar, Approximate analytical solutions of singularly perturbed fourth order boundary value problems using differential transform method, J. King Saud Univ. (Sci.). 25 (2013), 257-265. [26] E. R. El-Zahar and S. M. M. El-Kabeir, A new method for solving singularly perturbed boundary value problems, Appl. Math. Inf. Sci. 7 (2013), 927-938. [27] H. M. Habib and E. R. El-Zahar, Variable step size initial value algorithm for singular perturbation problems using locally exact integration, Appl. Math. Comput. 200 (2008), 330-340. [28] H. M. Habib and E. R. El-Zahar, An algorithm for solving singular perturbation problems with mechanization, Appl. Math. Comput. 188 (2007), 286-302. [29] R. Vulanović, A uniform numerical method for quasilinear singular perturbation problems without turning points, Computing 41 (1989), 97-106. [30] E. P. Doolan, J. J. H. Miller and W. H. A. Schilders, Uniform Numerical Methods for Singular-perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, World Scientific Publishing Company, 1996. [31] M. Kumar, H. K. Mishra and P. Singh, A boundary value approach for a class of linear singularly perturbed boundary value problems, Advances in Engineering Software 40(4) (2009), 298-304. [32] F. Geng, A novel method for solving a class of singularly perturbed boundary value problems based on reproducing kernel method, Appl. Math. Comput. 218(8) (2011), 4211-4215. [33] Y. N. Reddy and P. P. Chakravarthy, An initial-value approach for solving singularly perturbed two-point boundary value problems, Appl. Math. Comput. 155(1) (2004), 95-110. [34] M. K. Kadalbajoo and D. Kumar, A non-linear single step explicit scheme for non-linear two-point singularly perturbed boundary value problems via initial value technique, Appl. Math. Comput. 202(2) (2008), 738-746. [35] A. H. Nayfeh, Perturbation Methods, Wiley, New York, 1979. [36] M. Guedda, Local and global properties of solutions of a nonlinear boundary layer equation, Progr. Nonlinear Differential Equations Appl. 63 (2005), 269-277. [37] M. J. Martin and I. D. Boyd, Blasius boundary layer solution with slip flow conditions, Presented at the 22nd Rarefied Gas Dynamics Symposium, T. J. Bartel and M. A. Gallis, eds., Sydney, Australia, 2000. [38] H. Weyl, On the differential equations of the simplest boundary-layer problems, Annals of Mathematics 43 (1942), 381-407. [39] S. M. Holmquist, An examination of the effectiveness of the Adomian decomposition method in fluid dynamic applications, University of Central Florida, 2007. [40] C. S. Liu, The Lie-group shooting method for solving nonlinear singularly perturbed boundary value problems, Commun. Nonlinear Sci. Numer. Simul. 17(4) (2012), 1506-1521. [41] C. S. Liu, E. R. El-Zahar and C. W. Chang, Higher-order asymptotic numerical solutions for singularly perturbed problems with variable coefficients, Mathematics 10(15) (2022), 2791. [42] I. A. Al-Subaihi, M. T. Shatnawi and H. I. Siyyam, A ninth-order iterative method free from second derivative for solving nonlinear equations, Int. J. Math. Anal. 5(47) (2011), 2337-2347. [43] I. P. Edward, M. Imran and L. Deswita, A sixth-order derivative-free iterative method for solving nonlinear equations, Bulletin of Mathematics 8(01) (2016), 1-8. [44] A. Asaithambi, Solution of the Falkner-Skan equation by recursive evaluation of Taylor coefficients, J. Comput. Appl. Math. 176(1) (2005), 203-214. [45] R. Peris, A. Marquina and V. Candela, The convergence of the perturbed Newton method and its application for ill-conditioned problems, Appl. Math. Comput. 218(7) (2011), 2988-3001.
|