Keywords and phrases: Hamilton-Jacobi equation, viscosity solutions, striated medium.
Received: October 4, 2022; Accepted: November 15, 2022; Published: December 31, 2022
How to cite this article: AKONA Tcha, EDARH-BOSSOU Toyo Koffi and d’ALMEIDA Amah Séna, A viscosity solution for a Hamilton-Jacobi type equation, Universal Journal of Mathematics and Mathematical Sciences 18(1) (2023), 17-34. http://dx.doi.org/10.17654/2277141723002
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] Nicolas Bacaër, Minplus sectral theory and travelling front in combustion, IFAC Proceedings 34(13) (2001), 731-735. [2] Guy Barles, Existence results for first order Hamilton-Jacobi equations, Ann. Inst. Henri Poincaré 1(5) (1984), 325-340. [3] Patrick Bernard and Jean-Michel Roquejoffre, Convergence to time-periodic solutions in Hamilton-Jacobi equations on the circle, Comm. Partial Differential Equations 29(3-4) (2005), 457-469. [4] Mihaï Bostan and Gawtum Namah, Remarks on bounded solutions of steady Hamilton-Jacobi equations, C. R. Acad. Sci. Paris 347(15-16) (2009), 873-878. [5] Mihaï Bostan and Gawtum Namah, Time periodic viscosity solutions of Hamilton-Jacobi equations, Comm. Pure Appl. Anal. 6(2) (2007), 1-22. [6] Micheal G. Crandall, Hitoshi Ishii and Pierre-Louis Lions, User’s guide to viscosity solutions of second order partial differential equations, American Mathematical Society 27(1) (1992), 1-67. [7] T. K. Edarh-Bossou, Etude de la propagation d’un front de flamme dans un milieu strié, Thèse de Doctorat, Univ Claude-Bernard Lyon I-ENS Lyon, 1993. [8] Albert Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris Sér. I. Math. 324(9) (1997), 1043-1046. [9] Jean-Michel Roquejoffre, Convergence to steady states or periodic solutions in a class of Hamilton-Jacobi equations, J. Math. Pures Appl. (9) 80(1) (2001), 85-104. [10] C. Schmidt-Lainé and Toyo Koffi Edarh-Bossou, Some results regarding an equation of Hamilton-Jacobi type, Arch. Math. (Brno) 35(3) (1999), 203-214.
|